Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1393–1403 | Cite as

Insilco Prediction and Characterization of microRNAs from Oncopeltus fasciatus (Hemiptera: Lygaeidae) Genome

  • R. EllangoEmail author
  • R. AsokanEmail author
  • V. V. Ramamurthy


For studies on functional genomics, small RNAs, especially microRNAs (miRNAs), have emerged as a hot topic due to their importance in cellular and developmental processes. Identification of insect miRNAs largely depends on the availability of genomic sequences in the public domain. The large milkweed bug, Oncopeltus fasciatus (Dallas) is a hemimetabolous insect which has become a model hemipteran system for various molecular studies. In this study, we identified 96 candidate mature miRNAs from O. fasciatus genome using a blast search with the previously reported animal miRNAs. The secondary structure of predicted miRNA sequences was determined online using “mfold” web server and verified by calculating the minimal free energy index (MFEI). Six miRNAs let-7e, miR-133c, miR-219b, mir-466d, mir-669f, and mir-669l are reported for the first time in Insecta. Comparison of O. fasciatus mir-2 and mir-71 family clusters to those of diverse insect species showed that they are highly conserved. The phylogenetic analysis of miRNAs revealed the evolutionary relationship of conserved miRNAs of O. fasciatus with other insect species. Using a classical rule-based algorithm method, we predicted the possible targets of the new miRNAs. Our study not only identified the list of miRNAs in O. fasciatus but also provides a basic platform for developing novel pest management strategies based on artificial miRNAs.


O. fasciatus miRNA Insect genome MFEI value Target prediction 



Our sincere thanks are due to the Director, Indian Institute of Horticultural Research, Bengaluru, India, for providing the facilities and encouragement. We gratefully acknowledge the financial support received from the Indian Council of Agricultural Research (ICAR), New Delhi through the XIIth plan Network Project on ORP-on Management of sucking pest on horticultural crops.

Supplementary material

12010_2016_2072_MOESM1_ESM.xls (47 kb)
Table S1 Oncopeltus fasciatus mature miRNA details. (XLS 47 kb)
12010_2016_2072_MOESM2_ESM.xls (39 kb)
Table S2 O. fasciatus precursor miRNA details. (XLS 39 kb)
12010_2016_2072_MOESM3_ESM.xls (32 kb)
Table S3 Prediction of possible targets of O. fasciatus miRNA. (XLS 32 kb)
12010_2016_2072_MOESM4_ESM.xls (76 kb)
Table S4 Both Miranda and RNA hybrid were used to predict the possible target for six ofa-miRNAs. (XLS 75 kb)


  1. 1.
    Asgari, S. (2013). MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 43, 388–397.CrossRefGoogle Scholar
  2. 2.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858.CrossRefGoogle Scholar
  3. 3.
    Agrawal, N., Sachdev, B., Rodrigues, J., Sree, K. S., & Bhatnagar, R. K. (2013). Development associated profiling of chitinase and microRNA of Helicoverpa armigera identified chitinase repressive microRNA. Scientific Reports, 3, 2292.Google Scholar
  4. 4.
    Zeng, Y., & Cullen, B. R. (2005). Efficient processing of primary microRNA hairpins by Drosha requires flanking non-structured RNA sequences. Journal of Biological Chemistry, 280, 27595–27603.CrossRefGoogle Scholar
  5. 5.
    Winter, J., & Diederichs, S. (2011). Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biology, 8, 1149–1157.CrossRefGoogle Scholar
  6. 6.
    Lee, I., Ajay, S. S., Yook, J. I., Kim, H. S., Hong, S. H., Kim, N. H., Dhanasekaran, S. M., Chinnaiyan, A. M., & Athey, B. D. (2009). New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Research, 19, 1175–1183.CrossRefGoogle Scholar
  7. 7.
    Jagadeeswaran, G., Zheng, Y., Sumathipala, N., Jiang, H., Arrese, E. L., Soulages, J. L., Zhang, W., & Sunkar, R. (2010). Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 11, 52.CrossRefGoogle Scholar
  8. 8.
    Alves e Silva, T. L., Vasconcellos, L. R. C., Lopes, A. H., & Souto-Padrón, T. (2013). The immune response of hemocytes of the insect Oncopeltus fasciatus against the flagellate Phytomonas serpens. PLoS ONE, 8, e72076.CrossRefGoogle Scholar
  9. 9.
    Liu, J., Lemonds, T. R., & Popadic, A. (2014). The genetic control of aposematic black pigmentation in hemimetabolous insects: insights from Oncopeltus fasciatus. Evolution & Development, 16, 270–277.CrossRefGoogle Scholar
  10. 10.
    Ewen-Campen, B., Shaner, N., Panfilio, K. A., Suzuki, Y., Roth, S., & Extavour, C. G. (2011). The maternal and early embryonic transcriptome of the large milkweed bug Oncopeltus fasciatus. BMC Genomics, 12, 61.CrossRefGoogle Scholar
  11. 11.
    Qu, J., Richards, S., Bandaranaike, D., Bellair, M., Blankenburg, K., Chao, H., Dinh, H., Doddapaneni, H., Downs, B., Dugan-Rocha, S., Elkadiri, S., Gnanaolivu, R., Hernandez, B., Javaid, M., Jayaseelan, J. C., Lee, S., Li, M., Ming, W., Munidasa, M., Muniz, J., Nguyen, L., Ongeri, F., Osuji, N., Pu, L. L., Puazo, M., Qu, C., Quiroz, J., Raj, R., Weissenberger, G., Xin, Y., Zou, X., Han, Y., Worley, K., Muzny, D., & Gibbs, R. (2014). NCBI-BioProject: PRJNA229125, whole genome assembly of oncopeltus fasciatus using multiple sequencing technologies (
  12. 12.
    Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42, D68–D73.CrossRefGoogle Scholar
  13. 13.
    Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  14. 14.
    Ellango, R., Asokan, R., Mahmood, R., Ramamurthy, V. V., & Krishnakumar, N. K. (2014). Isolation of new microRNAs from the diamondback moth (Lepidoptera: yponomeutidae) genome by a computational method. Florida Entomologist, 97, 877–885.CrossRefGoogle Scholar
  15. 15.
    Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415.CrossRefGoogle Scholar
  16. 16.
    Singh, J., & Nagaraju, J. (2008). Insilco prediction and characterization of microRNAs from red flour beetle (Tribolium castaneum). Insect Molecular Biology, 17, 427–436.CrossRefGoogle Scholar
  17. 17.
    Ghosh, Z., Chakrabarti, J., & Mallick, B. (2007). miRNomics—the bioinformatics of microRNA genes. Biochemistry Biophysics Research Communication, 363, 6–11.CrossRefGoogle Scholar
  18. 18.
    Zhang, B. H., Pan, X. P., Cannon, C. H., Cobb, G. P., & Anderson, T. A. (2006). Computational identification of microRNAs and their targets. Computational Biology and Chemistry, 30, 395–407.CrossRefGoogle Scholar
  19. 19.
    Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., & Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34, D140–D144.CrossRefGoogle Scholar
  20. 20.
    Griffiths-Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32, D109–D111.CrossRefGoogle Scholar
  21. 21.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  22. 22.
    Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome Biology, 5, R1.CrossRefGoogle Scholar
  23. 23.
    Rehmsmeier, M., Steffen, P., Hoechsmann, M., & Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes RNA. RNA, 10, 1507–1517.CrossRefGoogle Scholar
  24. 24.
    Legeai, F., Rizk, G., Walsh, T., Edwards, O., Gordon, K., Lavenier, D., Leterme, N., Mereau, A., Nicolas, J., Tagu, D., & Jaubert-Possamai, S. (2010). Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum. BMC Genomics, 11, 281.CrossRefGoogle Scholar
  25. 25.
    Lau, N. C., Lim, L. P., Weinstein, E. G., & Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862.CrossRefGoogle Scholar
  26. 26.
    Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M. J., Tuschl, T., & Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33, 2697–2706.CrossRefGoogle Scholar
  27. 27.
    Saini, H. K., Enright, A. J., & Griffiths-Jones, S. (2008). Annotation of mammalian primary microRNAs. BMC Genomics, 9, 564.CrossRefGoogle Scholar
  28. 28.
    Marco, A., Hui, J. H., Ronshaugen, M., & Griffiths-Jones, S. (2010). Functional shifts in insect microRNA evolution. Genome Biology and Evolution, 2, 686–696.Google Scholar
  29. 29.
    Biryukova, I., Ye, T., & Levashina, E. (2014). Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae. BMC Genomics, 15, 557.CrossRefGoogle Scholar
  30. 30.
    Shin, C., Nam, J.-W., Farh, K. K.-H., Chiang, H. R., Shkumatava, A., & Bartel, D. P. (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Molecular Cell, 38, 789–802.CrossRefGoogle Scholar
  31. 31.
    Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 23, 215–233.CrossRefGoogle Scholar
  32. 32.
    Rigoutsos, I. (2009). New tricks for animal microRNAs: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Research, 69, 3245–3248.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of BiotechnologyIndian Institute of Horticultural Research (IIHR)BangaloreIndia
  2. 2.Division of EntomologyIndian Agricultural Research Institute (IARI)Pusa CampusIndia

Personalised recommendations