Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1346–1380 | Cite as

Cellulases: Classification, Methods of Determination and Industrial Applications

  • Amita Sharma
  • Rupinder Tewari
  • Susheel Singh Rana
  • Raman Soni
  • Sanjeev Kumar SoniEmail author


Microbial cellulases have been receiving worldwide attention, as they have enormous potential to process the most abundant cellulosic biomass on this planet and transform it into sustainable biofuels and other value added products. The synergistic action of endoglucanases, exoglucanases, and β-glucosidases is required for the depolymerization of cellulose to fermentable sugars for transformation in to useful products using suitable microorganisms. The lack of a better understanding of the mechanisms of individual cellulases and their synergistic actions is the major hurdles yet to be overcome for large-scale commercial applications of cellulases. We have reviewed various microbial cellulases with a focus on their classification with mechanistic aspects of cellulase hydrolytic action, insights into novel approaches for determining cellulase activity, and potential industrial applications of cellulases.


Biofuel Cellulose Cellulases Classification Cellulase assays Industrial applications 


  1. 1.
    Ioelovich, M. (2008). Cellulose as a nanostructured polymer: a short review. Bioresources, 3, 1403–1418.Google Scholar
  2. 2.
    Elba, P.S.B., & Maria, A.F. (2007). Bioethanol production via enzymatic hydrolysis of cellulosic biomass. In: The role of agricultural biotechnologies for production of bioenergy in developing countries an FAO seminar held in Rome. Available from http:// 2007.htm.Google Scholar
  3. 3.
    Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24, 452–481.CrossRefGoogle Scholar
  4. 4.
    Zenga, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85, 506–513.CrossRefGoogle Scholar
  5. 5.
    Mohite, B. V., Kamalja, K. K., & Patil, S. V. (2012). Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconoacetobacter hansenii NCIM 2529. Cellulose, 19, 1655–1666.CrossRefGoogle Scholar
  6. 6.
    Zhang, Y. H., & Lynd, L. R. (2004). Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Biotechnology and Bioengineering, 88, 797–824.CrossRefGoogle Scholar
  7. 7.
    Lenting, H. B. M., & Warmoeskerken, M. M. C. G. (2001). Mechanism of interaction between cellulase action and applied shear force, an hypothesis. Journal of Biotechnology, 89, 217–226.CrossRefGoogle Scholar
  8. 8.
    Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases: production, applications and challenges. Journal of Scientific and Industrial Research, 64, 832–844.Google Scholar
  9. 9.
    Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.CrossRefGoogle Scholar
  10. 10.
    Sadhu, S., & Maiti, T. K. (2013). Cellulase production by bacteria: a review. British Microbiology Research Journal, 3, 235–258.CrossRefGoogle Scholar
  11. 11.
    Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203.CrossRefGoogle Scholar
  12. 12.
    Watanabe, H., & Tokuda, G. (2001). Animal cellulases. Cellular and Molecular Life Sciences, 58, 1167–1178.CrossRefGoogle Scholar
  13. 13.
    Carlile, M. J., & Watkinson, S. C. (1997). The fungi. New York: Academic.Google Scholar
  14. 14.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  15. 15.
    Schwarz, W. H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology, 56, 634–649.CrossRefGoogle Scholar
  16. 16.
    Svetlichnyi, V. A., Svetlichnaya, T. P., Chernykh, N. A., & Zavarzin, G. A. (1990). Anaerocellum thermophilum, gen. nov. sp. nov.: an extremely thermophilic cellulolytic eubacterium isolated from hot springs in the valley of geysers. Mikrobiologie, 59, 598–604.Google Scholar
  17. 17.
    Rainey, F. A., Donnison, A. M., Janssen, P. H., Saul, D., Rodrigo, A., Bergquist, P. L., Daniel, R. M., Stackebrandt, E., & Morgan, H. W. (1994). Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiology Letters, 120, 263–266.CrossRefGoogle Scholar
  18. 18.
    Rapp, P., & Beerman, A. (1991). In: Biosynthesis and Biodegradation of Cellulose: Bacterial cellulases. Haigler, C.H. & Weimer, P.J. eds, Marcel Dekker, Inc., New York, pp. 535–595.Google Scholar
  19. 19.
    Saranraj, P., Stella, D., & Reetha, D. (2012). Microbial cellulases and its applictions: a review. International Journal of Biochemistry and Biotechnology, 1, 1–12.Google Scholar
  20. 20.
    Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.CrossRefGoogle Scholar
  21. 21.
    Divne, C., Stahlberg, J., Teeri, T. T., & Jones, T. A. (1998). High-resolution crystal structures reveal how a cellulose chain is bound in the 50Å long tunnel of cellobiohydrolaseI from Trichoderma reesei. Journal of Molecular Biology, 275, 309–325.CrossRefGoogle Scholar
  22. 22.
    Din, N., Damude, H. G., Gilkes, N. R., Miller, R. C., Warren, R. A., & Kilburn, D. G. (1994). C1-Cx revisited: intramolecular synergism in a cellulase. Proceedings of the National Academy of Sciences, 91, 11383–11387.CrossRefGoogle Scholar
  23. 23.
    Teeri, T. T. (1997). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology, 15, 160–167.CrossRefGoogle Scholar
  24. 24.
    Kongruang, S., Han, M. J., Breton, C. I. G., & Penner, M. H. (2004). Quantitative analysis of cellulose-reducing ends. Applied Biochemistry and Biotechnology, 113, 213–231.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y. H. P., & Lynd, L. R. (2005). Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules, 6, 1510–1515.CrossRefGoogle Scholar
  26. 26.
    Dashtban, M., Maki, M., Leung, K. T., Mao, C., & Qin, W. (2010). Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 30, 302–309.CrossRefGoogle Scholar
  27. 27.
    Shuangqi, T., Zhenyu, W., Ziluan, F., Lili, Z., & Jichang, W. (2011). Determination methods of cellulase activity. African Journal of Biotechnology, 10, 7122–7125.Google Scholar
  28. 28.
    Ozioko, P. C., Ikeyi, A. P., & Ugwu, O. P. C. (2013). Review article: cellulases, their substrates, activity and assay methods. The Experiment, 12, 778–785.Google Scholar
  29. 29.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and relative substances. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  30. 30.
    Viles, F. J., & Silverman, L. (1949). Determination of starch and cellulose with anthrone. Analytical Chemistry, 21, 950–953.CrossRefGoogle Scholar
  31. 31.
    Roe, J. H. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry, 212, 335–343.Google Scholar
  32. 32.
    Lee, J. M., Heitmann, J. A., & Pawlak, J. J. (2006). Rheology of carboxymethyl cellulose solutions treated with cellulases. BioResources, 2, 20–33.Google Scholar
  33. 33.
    Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium, 6, 21–33.Google Scholar
  34. 34.
    Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375–380.Google Scholar
  35. 35.
    Somogyi, M. (1952). Notes on sugar determination. The Journal of Biological Chemistry, 195, 19–23.Google Scholar
  36. 36.
    Trinder, P. (1969). Determination of blood glucose using 4-amino phenazone as oxygen acceptor. Journal of Clinical Pathology, 22, 246.CrossRefGoogle Scholar
  37. 37.
    Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., & Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Applied and Environmental Microbiology, 68, 5136–5141.CrossRefGoogle Scholar
  38. 38.
    Zverlov, V. V., Schantz, N., & Scwarz, W. H. (2005). A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1, 4-glucanase producing cellodextrose. FEMS Microbiology Letters, 249, 353–358.CrossRefGoogle Scholar
  39. 39.
    Soni, S. K., & Soni, R. (2010). Regulation of cellulase synthesis in Chaetomium erraticum. BioResources, 5, 81–98.Google Scholar
  40. 40.
    Bansal, N., Soni, R., Janveja, C., & Soni, S. K. (2012). Production of xylanase-cellulase complex by Bacillus subtilis NS7 for the biodegradation of agro-waste residues. Lignocellulose, 1, 196–209.Google Scholar
  41. 41.
    Janveja, C., Rana, S. S., & Soni, S. K. (2013). Kitchen waste residues as potential renewable biomass resources for the production of multiple fungal carbohydrases and second generation bioethanol. Journal of Technology Innovations in Renewable Energy, 2, 186–200.Google Scholar
  42. 42.
    Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2, 21.CrossRefGoogle Scholar
  43. 43.
    Guignard, R., & Pilet, P. E. (1976). Viscosimetric determination of cellulase activity: critical analyses. Plant & Cell Physiology, 17, 899–908.Google Scholar
  44. 44.
    Zhang, Y. H. P., Hong, J., & Ye, X. (2009). Cellulase assays. Methods in Molecular Biology, 581, 213–231.CrossRefGoogle Scholar
  45. 45.
    Zverlov, V. V., Velikodvorskaya, G. A., & Schwarz, W. H. (2002). A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology, 148, 247–255.CrossRefGoogle Scholar
  46. 46.
    Zverlov, V. V., Velifodvorskaya, G. A., & Schwarz, W. H. (2003). Two new cellulosome components encoded downstream of cell in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possible structural protein CseP. Microbiology, 149, 515–524.CrossRefGoogle Scholar
  47. 47.
    Ten, L. N., Im, W. T., Kim, M. K., Kang, M. S., & Lee, S. T. (2004). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. Journal of Microbiological Methods, 56, 375–382.CrossRefGoogle Scholar
  48. 48.
    Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57, 503–507.CrossRefGoogle Scholar
  49. 49.
    Sharrock, K. R. (1988). Cellulase assay methods: a review. Journal of Biochemical and Biophysical Methods, 17, 81–105.CrossRefGoogle Scholar
  50. 50.
    Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160, 87–117.CrossRefGoogle Scholar
  51. 51.
    van Tilbeurgh, H., & Claeyssens, M. (1985). Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Letters, 187, 283–288.CrossRefGoogle Scholar
  52. 52.
    van Tilbeurgh, H., Claeyssens, M., & Bruyne, C. K. (1982). The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Letters, 149, 152–156.CrossRefGoogle Scholar
  53. 53.
    van Tilbeurgh, H., Pettersson, G., Bhikabhai, R., De Boeck, H., & Claeyssens, M. (1985). Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1, 4-beta-glucan cellobiohydrolases II. European Journal of Biochemistry, 148, 329–334.CrossRefGoogle Scholar
  54. 54.
    Deshpande, M. V., Eriksson, K. E., & Pettersson, L. G. (1984). An assay for selective determination of exo-1, 4,-beta-glucanases in a mixture of cellulolytic enzymes. Analytical Biochemistry, 138, 481–487.CrossRefGoogle Scholar
  55. 55.
    Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnology and Bioengineering, 36, 275–287.CrossRefGoogle Scholar
  56. 56.
    Boschker, H. T. S., & Cappenberg, T. E. (1994). A sensitive method using 4-methylumbelliferyl-3-cellobiose as a substrate to measure (1, 4)-β-glucanase activity in sediments. Applied and Environmental Microbiology, 60, 3592–3596.Google Scholar
  57. 57.
    Courty, P. E., Pritsch, K., Schloter, M., Hartmann, A., & Garbaye, J. (2005). Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytologist, 167, 309–319.CrossRefGoogle Scholar
  58. 58.
    Coleman, D. J., Studler, M. J., & Naleway, J. J. (2007). A long-wavelength fluorescent substrate for continuous fluorometric determination of cellulase activity: Resorufin-β-D-cellobioside. Analytical Biochemistry, 371, 146–153.CrossRefGoogle Scholar
  59. 59.
    Goggin, K. D., Hammen, P. D., Kuntson, K. L., Lambert, J. F., Walinsky, S. W., & Watson, H. A. (2004). Commercial synthesis of a-D-cellobiosyl bromide heptaacetate. Journal of Chemical Technology and Biotechnology, 60, 253–256.CrossRefGoogle Scholar
  60. 60.
    Caspi, J., Irwin, D., Lamed, R., Li, Y., Fierobe, H. P., Wilson, D. B., & Bayer, E. A. (2008). Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. Journal of Biotechnology, 135, 351–357.CrossRefGoogle Scholar
  61. 61.
    Kubicek, C. P. (1982). Beta-glucosidase excretion by Trichoderma pseudokoningii: Correlations with cell wall bound beta-1, 3-glucanase activities. Archives of Microbiology, 132, 349–354.CrossRefGoogle Scholar
  62. 62.
    McCarthy, J. K., Uzelac, A., Davis, D. F., & Eveleigh, D. E. (2004). Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. The Journal of Biological Chemistry, 279, 11495–11502.CrossRefGoogle Scholar
  63. 63.
    Zhang, Y. H. P., & Lynd, L. R. (2004). Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Applied and Environmental Microbiology, 70, 1563–1569.CrossRefGoogle Scholar
  64. 64.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  65. 65.
    Soni, R., Sandhu, D. K., & Soni, S. K. (1998). Catabolite repression of β-glucosidase and amylase production in Chaetomium erraticum. Indian Journal of Microbiology, 38, 95–99.Google Scholar
  66. 66.
    Soni, R., Sandhu, D. K., & Soni, S. K. (1999). Localization and optimization of cellulose production in Chaetomium erraticum. Journal of Biotechnology, 73, 43–51.CrossRefGoogle Scholar
  67. 67.
    Yoon, J. J., Kim, K. Y., & Cha, C. J. (2008). Purification and characterization of thermostable beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. Journal of Microbiology, 46, 51–55.CrossRefGoogle Scholar
  68. 68.
    Yang, S., Jiang, Z., Yan, Q., & Zhu, H. (2008). Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. Journal of Agricultural and Food Chemistry, 56, 602–608.CrossRefGoogle Scholar
  69. 69.
    Korotkova, O. G., Semenova, M. V., Morozova, V. V., Zorov, I. N., Sokolova, L. M., Bubnova, T. M., Okunev, O. N., & Sinitsyn, A. P. (2009). Isolation and properties of fungal beta-glucosidases. Biochemistry, 74, 569–577.Google Scholar
  70. 70.
    Bansal, N., Tewari, R., Gupta, J. K., Soni, R., & Soni, S. K. (2011). A novel strain of Aspergillus niger producing a cocktail of hydrolytic depolymerising enzymes for the production of second generation biofuels. BioResources, 6, 552–569.Google Scholar
  71. 71.
    Janveja, C., Rana, S. S., & Soni, S. K. (2013). Environmentally acceptable management of kitchen waste residues by using them as substrates for the production of a cocktail of fungal carbohydrates. International Journal of Chemical and Environmental Systems, 4, 20–29.Google Scholar
  72. 72.
    Rana, S. S., Janveja, C., & Soni, S. K. (2013). Brewer’s spent grain as a valuable substrate for low cost production of fungal cellulases by statistical modeling in solid state fermentation and generation of cellulosic ethanol. International Journal of Food and Fermentation Technology, 3, 41–55.CrossRefGoogle Scholar
  73. 73.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.Google Scholar
  74. 74.
    Coward-Kelly, G., Aiello-Mazzari, C., Kim, S., Granda, C., & Holtzapple, M. (2003). Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnology and Bioengineering, 82, 745–749.CrossRefGoogle Scholar
  75. 75.
    Nordmark, T. S., Bakalinsky, A., & Penner, M. H. (2007). Measuring cellulase activity: application of the filter paper assay to low-activity enzyme preparations. Applied Biochemistry and Biotechnology, 137–140, 131–139.Google Scholar
  76. 76.
    Camassola, M., & Dillon, A. J. P. (2012). Cellulase determination: modifications to make the filter paper assay easy, fast, practical and efficient. Open Access Scientific Reports, 1, 125.Google Scholar
  77. 77.
    Decker, S. R., Adney, W. S., Jennings, E., Vinzant, T. B., & Himmel, M. E. (2003). Automated filter paper assay for determination of cellulase activity. Applied Biochemistry and Biotechnology, 105–108, 689–703.CrossRefGoogle Scholar
  78. 78.
    Helbert, W., Chanzy, H., Husum, T. L., Schulein, M., & Ernst, S. (2003). Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. Biomacromolecules, 4, 481–487.CrossRefGoogle Scholar
  79. 79.
    Xiao, Z., Storms, R., & Tsang, A. (2004). Microplate-based filter paper assay to measure total cellulase activity. Biotechnology and Bioengineering, 88, 832–837.CrossRefGoogle Scholar
  80. 80.
    Xiao, Z., Storms, R., & Tsang, A. (2005). Microplate-based carboxymethylcellulose assay for endoglucanase activity. Analytical Biochemistry, 342, 176–178.CrossRefGoogle Scholar
  81. 81.
    King, B. C., Donnelly, M. K., Bergstrom, G. C., Walker, L. P., & Gibson, D. M. (2009). An optimized microplate assay system for quantitative evaluation of plant cell. Biotechnology and Bioengineering, 102, 1033–1044.CrossRefGoogle Scholar
  82. 82.
    Navarro, D., Couturier, M., Silva, G. G. D., Berrin, J. G., Rouau, X., Asther, M., & Bignon, C. (2010). Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microbial Cell Factories, 9, 58.CrossRefGoogle Scholar
  83. 83.
    Jang, J. H., Lee, H. S., & Lyoo, W. S. (2007). Effect of UV irradiation on cellulase degradation of cellulose acetate containing TiO2. Fibers and Polymers, 8, 19–24.CrossRefGoogle Scholar
  84. 84.
    Toyama, H., Yano, M., Hotta, T., & Toyama, N. (2007). Filter paper degrading ability of a Trichoderma strain with multinucleate conidia. Applied Biochemistry and Biotechnology, 137–140, 155–160.Google Scholar
  85. 85.
    Wang, L., Wang, Y., & Ragauskas, A. J. (2010). A novel FRET approach for in situ investigation of cellulase–cellulose interaction. Analytical and Bioanalytical Chemistry, 398, 1257–1362.CrossRefGoogle Scholar
  86. 86.
    Rojas, O.J., Jeong, C., Turon, X., & Argyropoulos, D.S. (2006). Measurement of Cellulase Activity with Piezoelectric Resonators, Vol. 954. In: D.S., Argyropoulos (eds), Materials, Chemicals, and Energy from Forest Biomass (pp. 478–494). American Chemical Society.Google Scholar
  87. 87.
    Hu, G., Heitmann, J. A., & Rojas, O. J. (2009). Quantification of cellulase activity using the quartz crystal microbalance technique. Analytical Chemistry, 81, 1872–1880.CrossRefGoogle Scholar
  88. 88.
    Kumagai, A., Lee, S. H., & Endo, T. (2013). Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Biomacromolecules, 14, 2420–2426.CrossRefGoogle Scholar
  89. 89.
    Karim, N., & Kidokoro, S. (2004). Precise and continuous observation of cellulase-catalyzed hydrolysis of cello-oligosaccharides using isothermal titration calorimetry. Thermochimica Acta, 412, 91–96.CrossRefGoogle Scholar
  90. 90.
    Karim, N., & Kidokoro, S. (2005). Precise evaluation of enzyme activity using isothermal titration calorimetry. Netsu Sokutei, 33, 27–35.Google Scholar
  91. 91.
    Murphy, L., Baumann, M. J., Borch, K., Sweeney, M., & Westh, P. (2010). An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases. Analytical Biochemistry, 404, 140–148.CrossRefGoogle Scholar
  92. 92.
    Murphy, L., Cruys-Bagger, N., Damgaard, H. D., Baumann, M. J., Olsen, S. N., Borch, K., Lassen, S. F., Sweeney, M., Tatsumi, H., & Westh, P. (2011). Origin of the initial burst in activity for T. reesei endoglucanases hydrolyzing insoluble cellulose. The Journal of Biological Chemistry, 287, 1252–1260.CrossRefGoogle Scholar
  93. 93.
    Linder, M., Szilvay, G. R., Nakari-Setala, T., Soderlund, H., & Penttila, M. (2002). Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma resei. Protein Science, 11, 2257–2266.CrossRefGoogle Scholar
  94. 94.
    Mitsumori, M., Xu, L. M., Kajikawa, H., & Kurihara, M. (2002). Properties of cellulose-binding modules in endoglucanase F from Fibrobacter succinogenes S85 by means of surface plasmon resonance. FEMS Microbiology Letters, 214, 277–281.CrossRefGoogle Scholar
  95. 95.
    Allen, S. G., Tanchak, O. M., Quirk, A., Raegen, A. N., Reiter, K., Whitney, R., Clarke, A. J., Lipkowski, J., & Dutcher, J. R. (2012). Surface plasmon resonance imaging of the enzymatic degradation of cellulose microfibrils. Analytical Methods, 4, 3238–3245.CrossRefGoogle Scholar
  96. 96.
    Jeon, S. D., Lee, J. E., Kim, S. J., Park, S. H., Choi, G. W., & Hana, S. O. (2013). Unique contribution of the cell wall-binding endoglucanase G to the cellulolytic complex in Clostridium cellulovorans. Applied and Environmental Microbiology, 79, 5942–5948.CrossRefGoogle Scholar
  97. 97.
    Shao, Y. Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. H. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22, 1027–1036.CrossRefGoogle Scholar
  98. 98.
    Cruys-Bagger, N., Ren, G., Tatsumi, H., Baumann, M. J., Spodsberg, N., Andersen, H. D., Gorton, L., Borch, K., & Westh, P. (2012). An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose. Biotechnology and Bioengineering, 109, 3199–3204.CrossRefGoogle Scholar
  99. 99.
    Cruys-Bagger, N., Badino, S. F., Tokin, R., Gontsarik, M., Fathalinejad, S., Jensen, K., Toscano, M. D., Sørensen, T. S., Borch, K., Tatsumi, H., Valjamae, P., & Westh, P. (2014). A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases. Enzyme and Microbial Technology, 58–59, 68–74.CrossRefGoogle Scholar
  100. 100.
    Cruys-Bagger, N., Tatsumi, H., Borch, K., & Westh, P. (2014). A graphene modified screen-printed carbon electrode for measurements of unoccupied active sites in a cellulase. Analytical Biochemistry, 447, 162–168.CrossRefGoogle Scholar
  101. 101.
    Wilson, C. A., & Wood, T. M. (1992). The anaerobic fungus Neocallimastix frontalis: Isolation & properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Applied Microbiology and Biotechnology, 37, 125–129.CrossRefGoogle Scholar
  102. 102.
    D’Costa, E. J., Higgins, I. J., & Turner, A. P. F. (1986). Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors, 2, 71–87.CrossRefGoogle Scholar
  103. 103.
    Tang, Z. P., Louie, R. F., Lee, J. H., Lee, D. M., Miller, E. E., & Kost, G. J. (2001). Oxygen effects on glucose meter measurements with glucose dehy-drogenase and oxidase-based test strips for point-of-care testing. Critical Care Medicine, 29, 1062–1070.CrossRefGoogle Scholar
  104. 104.
    Hilden, L., Eng, L., Johansson, G., Lindqvist, S. E., & Pettersson, G. (2001). An amperometric cellobiose dehydrogenase-based biosensor can be used for measurement of cellulase activity. Analytical Biochemistry, 290, 245–250.CrossRefGoogle Scholar
  105. 105.
    Tatsumi, H., Katano, H., & Ikeda, T. (2006). Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric bioreactor. Analytical Biochemistry, 357, 257–261.CrossRefGoogle Scholar
  106. 106.
    Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Marquez, M., Klibanov, A. M., Griffiths, A. D., & Weitz, D. A. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 107, 4004–4009.CrossRefGoogle Scholar
  107. 107.
    Prodanovic, R., Ostafe, R., Blanusa, M., & Schwaneberg, U. (2012). Vanadium bromoperoxidase-coupled fluorescent assay for flow cytometry sorting of glucose oxidase gene libraries in double emulsions. Analytical and Bioanalytical Chemistry, 404, 1439–1474.CrossRefGoogle Scholar
  108. 108.
    Ostafe, R., Prodanovic, R., Commandeur, U., & Fischer, R. (2013). Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Analytical Biochemistry, 435, 93–98.CrossRefGoogle Scholar
  109. 109.
    Lim, J., Vrignon, J., Gruner, P., Karamitros, C. S., Konrad, M., & Baret, J. C. (2013). Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array. Applied Physics Letters, 103, 203704–4.CrossRefGoogle Scholar
  110. 110.
    Ostafe, R., Prodanovic, R., Ung, W. L., Weitz, D. A., & Fischer, R. (2014). A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics, 8, 041102–041104.CrossRefGoogle Scholar
  111. 111.
    Ferrari, A. R., Gaber, Y., & Fraaije, M. W. (2014). A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnology for Biofuels, 7, 37.CrossRefGoogle Scholar
  112. 112.
    Johnsen, H. R., & Krause, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. International Journal of Molecular Sciences, 15, 830–838.CrossRefGoogle Scholar
  113. 113.
    Mewis, K., Taupp, M., & Hallam, S. J. (2011). A high throughput screen for biomining cellulase activity from metagenomic libraries. Journal of Visualized Experiments, 48, 1–4.Google Scholar
  114. 114.
    Nyyssonen, M., Tran, H. M., Karaoz, U., Weihe, C., Hadi, M. Z., Martiny, J. B. H., Adam, C., Martiny, A. C., & Brodie, E. L. (2013). Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Frontiers in Microbiology, 4, 1–14.CrossRefGoogle Scholar
  115. 115.
    Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.CrossRefGoogle Scholar
  116. 116.
    Araujo, R., Casal, M., & Cavaco-paulo, A. (2008). Application of enzymes for textile fibres processing. Biocatalysis and Biotransformation, 26, 332–349.CrossRefGoogle Scholar
  117. 117.
    Mojsov, K. (2011). Application of enzymes in the textile industry: A review. In: II International Congress Engineering, Ecology and Materials in the Processing Industry Jahorina.Google Scholar
  118. 118.
    Shah, S. R. (2013). Chemistry and applications of cellulase in textile wet processing. Research Journal of Engineering Sciences, 2, 1–5.Google Scholar
  119. 119.
    Heikinheimo, L., Buchert, J., Miettinen-Oinonen, A., & Suominen, P. (2000). Treating denim fabrics with Trichoderma reesei cellulases. Textile Research Journal, 70, 969–973.CrossRefGoogle Scholar
  120. 120.
    Miettinen-Oinonen, A., & Suominen, P. (2002). Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Applied and Environmental Microbiology, 68, 3956–3964.CrossRefGoogle Scholar
  121. 121.
    Campos, R., Cavaco-Paulo, A., Andreaus, J., & Gubitz, G. (2000). Indigo cellulase interactions. Textile Research Journal, 70, 532–536.CrossRefGoogle Scholar
  122. 122.
    Pazarlioglu, N. K., Sariisik, M., & Telefoncu, A. (2005). Treating denim fabrics with immobilized commercial cellulases. Process Biochemistry, 40, 767–771.CrossRefGoogle Scholar
  123. 123.
    Montazer, M., & Maryan, A. S. (2010). Influences of different enzymatic treatment on denim garment. Applied Biochemistry and Biotechnology, 160, 2114–2128.CrossRefGoogle Scholar
  124. 124.
    Anish, R., Rahman, M. S., & Rao, M. A. (2007). Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnology and Bioengineering, 96, 48–56.CrossRefGoogle Scholar
  125. 125.
    Saravanan, D., Sreelakshmi, S. N., Raja, K. S., & Vasanthi, N. S. (2013). Biopolishing of cotton fabric with fungal cellulase and its effect on the morphology of cotton fibres. Indian Journal of Fibre & Textile Research, 38, 156–160.Google Scholar
  126. 126.
    Noreen, H., Zia, M. A., Ali, S., & Hussain, T. (2014). Optimization of bio-polishing of polyester/cotton blended fabrics with cellulases prepared from Aspergillus niger. Indian Journal of Biotechnology, 13, 108–113.Google Scholar
  127. 127.
    El-Sayed, H., El-Gabry, L., & Kantouch, F. (2010). Effect of bio-carbonisation of coarse wool on its dyeability. Indian Journal of Fibre & Textile Research, 35, 330–336.Google Scholar
  128. 128.
    Morgado, J., Cavaco-Paulo, A., & Rousselle, M. (2000). Enzymatic treatment of lyocell-Clarification of depilling mechanisms. Textile Research Journal, 70, 696–699.CrossRefGoogle Scholar
  129. 129.
    Mai, C., Kues, U., & Militz, H. (2004). Biotechnology in the wood industry. Applied Microbiology and Biotechnology, 63, 477–494.CrossRefGoogle Scholar
  130. 130.
    Efrati, Z., Talaeipour, M., Khakifirouz, A., & Bazyar, B. (2013). Impact of cellulase enzyme treatment on strength, morphology and crystallinity of deinked pulp. Cellulose Chemistry and Technology, 47, 547–551.Google Scholar
  131. 131.
    Kuhad, R. C., Mehta, G., Gupta, R., & Sharma, K. K. (2010). Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass & Bioenergy, 34, 1189–1194.CrossRefGoogle Scholar
  132. 132.
    Singh, A., & Sharma, R. (2013). Mycoremediation an eco-friendly approach for the degradation of cellulosic wastes from paper industry with the help of cellulases and hemicellulase activity to minimize the industrial pollution. International Journal of Environmental Engineering Management, 4, 199–206.Google Scholar
  133. 133.
    Pere, J., Puolakka, A., Nousiainen, P., & Buchert, J. (2001). Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. Journal of Biotechnology, 89, 247–255.CrossRefGoogle Scholar
  134. 134.
    Karmakar, M., & Ray, R. R. (2011). Current trends in research and application of microbial cellulases. Research Journal of Microbiology, 6, 41–53.CrossRefGoogle Scholar
  135. 135.
    Liu, J., & Hu, H. (2012). Role of cellulose binding domains in the adsorption of cellulases onto fibres and its effect on the enzymatic beating of bleached kraft pulp. Bioresources, 7, 878–892.Google Scholar
  136. 136.
    Jeffries, T. W., Klungness, J. H., Sykes, M. S., & Rutledge-Cropsey, K. R. (1994). Comparison of enzyme-enhanced with conventional de-inking of xerographic and laser-printed paper. Tappi Journal, 77, 173–179.Google Scholar
  137. 137.
    Pleach, M. A., Pastor, F. G., Puig, J., Vilaseca, F., & Mutje, P. (2003). Enzymatic deinking of old newspaper with cellulase. Process Biochemistry, 38, 1063–1067.CrossRefGoogle Scholar
  138. 138.
    Lee, C. K., Darah, I., & Ibrahim, C. O. (2007). Enzymatic deinking of laser printed office waste papers: some governing parameters on deinking efficiency. Bioresource Technology, 98, 1684–1689.CrossRefGoogle Scholar
  139. 139.
    Zhang, Z. J., Chen, Y. Z., Hu, H. R., & Sang, Y. Z. (2013). The beatability–aiding effect of Aspergillus niger crude cellulase on bleached simao pine kraft pulp and its mechanism of action. BioResources, 8, 5861–5870.Google Scholar
  140. 140.
    Garcia-Ubasart, J., Torres, A. L., Vila, C., Pastor, F. I. J., & Vidal, T. (2013). Biomodification of cellulose flax fibers by a new cellulase. Industrial Crops and Products, 44, 71–76.CrossRefGoogle Scholar
  141. 141.
    Bjork, N., Clarkson, K.A., Lad, P.J., & Weiss, G.L. (1997). Degradation resistant detergent compositions based on cellulase enzymes. US Patent. 5688290.Google Scholar
  142. 142.
    Uhlig, H. (1998). Industrial Enzymes and their Applications (p. 435). New York: John Wiley & Sons, Inc.Google Scholar
  143. 143.
    Mitchinson, C., & Wendt, D.J. (2001). Variant EGIII-like cellulase compositions. US Patent 6268328.Google Scholar
  144. 144.
    Bettiol, J.P., & Thoen, C.A.J.K. (2001). Alkaline detergent compositions comprising a specific cellulase. US Patent. 6187740.Google Scholar
  145. 145.
    Lenting, H.B.M., & Pijnacker, V.T. (2004). Detergents comprising cellulases. US Patent. 2004/0097393 A9.Google Scholar
  146. 146.
    Kottwitz, B., & Schambil, F. (2005). Cellulase and cellulose containing detergent. US Patent. 20050020472.Google Scholar
  147. 147.
    Singh, A., Kuhad, R.C., & Ward, O.P. (2007). Industrial application of microbial cellulases. Lignocellulose Biotechnology: Future Prospects. In: Kuhad, R.C. & Singh, A., (eds). I.K.International Publishing House, New Delhi, India, pp. 345–358.Google Scholar
  148. 148.
    Bedford, M.R., Morgan, A.J., Fowler, T., Clarkson, K.A., Ward, M.A., Collier, K.D., & Larenas, E.A. (2003). Enzyme feed additive and animal feed including it. US Patent. 6562340.Google Scholar
  149. 149.
    El-Adawy, M. M., Salem, A. Z. M., Borhami, B. E., Gado, H. M., Khalil, M. S., & Abo-Zeid, A. (2008). In vitro cecal gas production and dry matter degradability of some browse leaves in presence of enzymes from anaerobic bacterium in NZW rabbit. In Proceedings of the 9th WRSA World Rabbit Congress (pp. 643–647). Italy: Verona.Google Scholar
  150. 150.
    Gado, H. M., & Salem, A. Z. M. (2008). Influence of exogenous enzymes from anaerobic source on growth performance, digestibility, ruminal fermentation and blood metabolites in lambs fed of orange pulp silage in total mixed ration. In Proceedings of the 59th Annual Meeting of the European Association for Animal Production (pp. 228–230). Lithuania: Vilnius.Google Scholar
  151. 151.
    Rodrigues, M. A. M., Pinto, P., Bezerra, R. M. F., Dias, A. A., & Guedes, C. V. M. (2008). Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Animal Feed Science and Technology, 141, 326–338.CrossRefGoogle Scholar
  152. 152.
    Murad, H. H., Hanfy, M. A., Kholif, A. M., Gawad, M. H. A., & Murad, H. A. (2009). Effect of cellulases supplementation to some low quality roughages on digestion and milk production by lactating goats. Journal of Biological Chemistry and Environmental Sciences, 4, 791–809.Google Scholar
  153. 153.
    Abdel-Gawad, M. H., Gad, S. M., El-Sabaawy, E. H., Ali, H. M., & El-Bedawy, T. M. (2007). In vitro and in vivo digestability of some low quality roughages supplemented with fibrolytic enzyme for sheep. Egyptian Journal of Nutrition and Feeds, 10, 663–677.Google Scholar
  154. 154.
    Colombatto, D., Mould, F. L., Bhat, M. K., & Owen, E. (2007). Influence of exogenous fibrolytic enzyme level and incubation pH on the in vitro ruminal fermentation of alfalfa stems. Animal Feed Science and Technology, 137, 150–162.CrossRefGoogle Scholar
  155. 155.
    Giraldo, L. A., Tejido, M. L., Ranilla, M. J., & Carro, M. D. (2008). Effects of exogenous fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage: concentrate ratios. Animal Feed Science and Technology, 141, 306–325.CrossRefGoogle Scholar
  156. 156.
    Krueger, N. A., & Adesogan, A. T. (2008). Effect of different mixtures of fibrolytic enzymes on the digestion and fermentation of bahiagrass hay. Animal Feed Science and Technology, 145, 84–94.CrossRefGoogle Scholar
  157. 157.
    Murad, H. A., & Azzaz, H. H. (2010). Cellulase and dairy animal feeding. Biotechnology, 9, 238–256.CrossRefGoogle Scholar
  158. 158.
    Cowan, W.D. (1996). Animal feed.Industrial Enzymology, 2nd edn. In: Godfrey, T. and West, S. (eds). Macmillan Press, UK, pp. 360–371.Google Scholar
  159. 159.
    Dhiman, T. R., Zaman, M. S., Gimenez, R. R., Walters, J. L., & Treacher, R. (2002). Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Animal Feed Science and Technology, 101, 115–125.CrossRefGoogle Scholar
  160. 160.
    Shrivastava, B., Thakur, S., Khasa, Y. P., Gupte, A., Puniya, A. K., & Kuhad, R. C. (2011). White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation, 22, 823–831.CrossRefGoogle Scholar
  161. 161.
    Tricarico, J. M., Johnston, J. D., Dawson, K. A., Hanson, K. C., McLeod, K. R., & Harmon, D. L. (2005). The effects of an Aspergillus oryzae extract containing alpha-amylase activity on ruminal fermentation and milk production in lactating Holstein cows. Animal Science, 81, 365–374.CrossRefGoogle Scholar
  162. 162.
    Stella, A. V., Paratte, R., Valnegri, L., Cigalino, G., & Soncini, G. (2007). Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites and faecal flora in early lactating dairy goats. Small Ruminant Research, 67, 7–13.CrossRefGoogle Scholar
  163. 163.
    Zheng, W., Schingoethe, D. J., Stegeman, G. A., Hippen, A. R., & Treacher, R. J. (2000). Determination of when during the lactation cycle to start feeding a cellulase and xylanase enzyme mixture to dairy cows. Journal of Dairy Science, 83, 2319–2325.CrossRefGoogle Scholar
  164. 164.
    Beauchemin, K. A., Jones, S. D. M., Rode, L. M., & Sewalt, V. J. H. (1997). Effects of fibrolytic enzymes in corn or barley diets on performance and carcass characteristics of feedlot cattle. Canadian Journal of Animal Science, 77, 645–653.CrossRefGoogle Scholar
  165. 165.
    Knowlton, K. F., McKinney, J. M., & Cobb, C. (2002). Effect of a direct-fed fibrolytic enzyme formulation on nutrient intake, partitioning and excretion in early and late lactation Holstein cows. Journal of Dairy Science, 85, 3328–3335.CrossRefGoogle Scholar
  166. 166.
    Sharma, H. P., Patel, H., & Sharma, S. (2014). Enzymatic extraction and clarification of juice from various fruits. Trends in Post Harvest Technology, 2, 1–14.Google Scholar
  167. 167.
    Vaillant, F., Millan, A., Dornier, M., Decloux, M., & Reynes, M. (2001). Strategy for economical optimisation of the clarification of pulpy fruit juices using cross flow microfiltration. Journal of Food Engineering, 48, 83–90.CrossRefGoogle Scholar
  168. 168.
    Grassin, C. & Fauquembergue, P. (1996). Fruit juices. Industrial enzymology, 2nd edn. In: Godfrey, T. & West, S. (eds). Macmillan, UK, pp. 226–4.Google Scholar
  169. 169.
    Haarasilta, S., Pullinen, T., Tammersalo-Karsten, I., Vaisanen, S. & Franti, H. (1993). Method of improving the production process of dry cereal products by enzyme addition. US Patent. 5176927.Google Scholar
  170. 170.
    Galante, Y. M., Conti, A. D., & Monteverdi, R. (1998). Application of Trichoderma enzymes in food and feed industries. In G. F. Harman & C. P. Kubicek (Eds.), Vol 2: Trichoderma &Gliocladium—Enzymes, biological control and commercial applications (pp. 327–342). London: Taylor & Francis.Google Scholar
  171. 171.
    Gailing, M. F., Guibert, A., & Combes, D. (2000). Fractional factorial designs applied to enzymatic sugar beet pulps pressing improvement. Bioprocess Engineering, 22, 69–74.CrossRefGoogle Scholar
  172. 172.
    Broeck, H.C.V.D., Graaff, L.H.D., Visser, J. & Vanooijen, A.J.J. (2001). Fungal cellulases. US Patent. 6190890.Google Scholar
  173. 173.
    Vieira, F. G. K., Borges, G. D. S. C., Copetti, C., Amboni, R. D., De, M. C., Denardi, F., & Fett, R. (2009). Physico-chemical and antioxidant properties of six apple cultivars (Malus domestica Borkh) grown in southern Brazil. Scientia Horticulturae -Amsterdam., 122, 421–425.CrossRefGoogle Scholar
  174. 174.
    Rui, C. C. D., Junior, B. F., Silva, R. B., Cardoso, V. L., & Reis, M. H. M. (2012). Clarification of passion fruit juice with chitosan: effects of coagulation process variables and comparison with centrifugation and enzymatic treatments. Process Biochemistry, 47, 467–471.CrossRefGoogle Scholar
  175. 175.
    Sandri, I. G., Fontana, R. C., Barfknecht, D. M., & Silveira, M. M. (2011). Clarification of fruit juices by fungal pectinases. LWT--Food Science and Technology, 44, 2217–2222.CrossRefGoogle Scholar
  176. 176.
    El-Sharnouby, G. A., Al-Eid, M. S., & Al-Otaibi, M. M. (2009). Utilization of enzymes in the production of liquid sugar from dates. African Journal of Biochemistry Research, 3, 41–47.Google Scholar
  177. 177.
    Pal, A., & Khanum, F. (2011). Efficacy of xylanase purified from Aspergillus niger DFR-5 alone and in combination with pectinase and cellulose to improve yield and clarity of pineapple juice. Journal of Food Science and Technology, 48, 560–568.CrossRefGoogle Scholar
  178. 178.
    Nadeem, M. T., Butt, M. S., Anjum, F. M., & Asgher, M. (2009). Improving bread quality by carboxymethyl cellulase application. International Journal of Agriculture and Biology, 11, 727–730.Google Scholar
  179. 179.
    Kaur, M., & Sharma, H. K. (2013). Effect of enzymatic treatment on carrot cell wall for increased juice yield and effect on physicochemical parameters. African Journal of Plant Science, 7, 234–243.CrossRefGoogle Scholar
  180. 180.
    Khandare, V., Walia, S., Singh, M., & Kaur, C. (2011). Black carrot (Daucus carota ssp. Sativus) juice: processing effects on antioxidant composition and color. Food and Bioproducts Processing, 89, 482–486.CrossRefGoogle Scholar
  181. 181.
    Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77, 215–227.CrossRefGoogle Scholar
  182. 182.
    Brito, B., & Vaillant, F. (2012). Enzymatic liquefaction of cell-walls from kent and tommy atkins mango fruits. International Journal of Food Science and Nutrition Engineering, 2, 76–84.CrossRefGoogle Scholar
  183. 183.
    Baker, R. A., & Wicker, L. (1996). Current and potential applications of enzyme infusion in the food industry. Trends in Food Science and Technology, 7, 279–284.CrossRefGoogle Scholar
  184. 184.
    Shoseyov, O., & Bravdo, B. (2001). Enhancement of aroma in grapes and wines: Biotechnolodical approaches. Molecular Biology & Biotechnology of the Grapevine. 225–240.Google Scholar
  185. 185.
    Su, E., Xia, T., Gao, L., Dai, Q., & Zhang, Z. (2010). Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing, 88, 83–89.CrossRefGoogle Scholar
  186. 186.
    Contesini, F. J., Figueira, J. A., Kawaguti, H. Y., Fernandes, P. C. B., Carvalho, P. O., Nascimento, M. G., & Sato, H. H. (2013). Potential applications of carbohydrases immobilization in the food industry. International Journal of Molecular Sciences, 14, 1335–1369.CrossRefGoogle Scholar
  187. 187.
    Fantozzi, P., Petruccioli, G., & Montedoro, G. (1977). Trattamenti con additivi enzimatici alle paste di oliva sottoposte ad estrazione per pressione unica: Influenze delle cultivars, dell’epoca di raccolta e della conservazione. Grasse, 54, 381–388.Google Scholar
  188. 188.
    Garcia, A., Brenes, M., Moyano, M. J., Alba, J., Garcia, P., & Garrido, A. (2001). Improvement of phenolic compound content in virgin olive oils by using enzymes during malaxation. Journal of Food Engineering, 48, 189–194.CrossRefGoogle Scholar
  189. 189.
    Vierhuis, E., Servili, M., Baldioli, M., Schols, H. A., Voragen, A. G. J., & Montedoro, G. F. (2001). Effect of enzyme treatment during mechanical extraction of olive oil on phenolic compounds and polysaccharides. Journal of Agricultural and Food Chemistry, 49, 1218–1223.CrossRefGoogle Scholar
  190. 190.
    Najafian, L., Ghodsvali, A., Khodaparast, M. H. H., & Diosady, L. L. (2009). Aqueous extraction of virgin olive oil using industrial enzymes. Food Research International, 42, 171–175.CrossRefGoogle Scholar
  191. 191.
    Sharma, R., Sharma, P.C., Rana, J.C. & Joshi, V.K. (2013). Improving the olive oil yield and quality through enzyme-assisted mechanical extraction, antioxidants and packaging. Journal of Food Processing and Preservation. ISSN 1745–4549.Google Scholar
  192. 192.
    Ranalli, A., Pollastri, L., Contento, S., Lucera, L., & Del re, P. (2003). Enhancing the quality of virgin olive oil by use of a new vegetable enzyme extract during processing. European Food Research and Technology, 216, 109–115.Google Scholar
  193. 193.
    Sharma, R., & Sharma, P. C. (2007). Optimization of enzymatic pretreatments for maximizing olive oil recovery. Journal of Scientific and Industrial Research, 66, 52–55.Google Scholar
  194. 194.
    Sharma, R., Kaushal, B. B., & Sharma, P. C. (2007). Development of cost effective commercial method for enhancing yield and quality of olive oil. Journal of Food Science and Technology, 44, 133–137.Google Scholar
  195. 195.
    Ranalli, A., Malfatti, A., Lucera, L., Contento, S., & Sotiriou, E. (2005). Effects of processing techniques on the natural colourings and the other functional constituents in virgin olive oil. Food Research International, 38, 873–878.CrossRefGoogle Scholar
  196. 196.
    De Faveri, D., Torre, P., Aliakbarian, B., Perego, P., Dominguez, J.M., & Torres, B.R. (2008). Effect of different enzyme formulations on the improvement of phenolic compound content in olive oil. In: Proceedings of the IUFoST 13th World Congress of Food Science & Technology, Nantes, France, pp. 927–928.Google Scholar
  197. 197.
    Mortabit, D., Zyani, M., & Koraichi, S. I. (2014). Improvement of olive oil quality of moroccan picholine by Bacillus licheniformis enzyme’s preparation. International Journal of Pure and Applied Sciences and Technology, 20, 44–52.Google Scholar
  198. 198.
    De Faveri, D., Aliakbarian, B., Avogadro, M., Perego, P., & Converti, A. (2008). Improvement of olive oil phenolics content by means of enzyme formulations: Effect of different enzyme activities and levels. Biochemical Engineering Journal, 41, 149–156.CrossRefGoogle Scholar
  199. 199.
    Harada, E., Lysenko, D., & Preston, K. R. (2000). Effects of commercial hydrolytic enzyme additives on Canadian short process bread properties and processing characteristics. Cereal Chemistry, 77, 70–76.CrossRefGoogle Scholar
  200. 200.
    Pilar, M.R., & Rafael, S.N.D. (2004). Enzymatic composition for improving the quality of bread and pastry doughs. WO 2004084638 A1.Google Scholar
  201. 201.
    Boutte, T.T., Sargent, K.L., & Feng, G. (2009). Enzymatic dough conditioner and flavor improver for bakery products. US Patent. 20090297659.Google Scholar
  202. 202.
    Yurdugul, S., Pancevska, N. A., Yildiz, G. G., & Bozoglu, F. (2012). The influence of a cellulase bearing enzyme complex from anaerobic fungi on bread staling. Romanian Agricultural Research, 29, 271–279.Google Scholar
  203. 203.
    Oliveira, D. S., Telis-Romero, J., Da-Silva, R., & Franco, C. M. L. (2014). Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread quality. Food Chemistry, 143, 139–146.CrossRefGoogle Scholar
  204. 204.
    Bunea, A., Lujerdean, A., Pintea, A., Andrei, S., & Socaciu, C. (2009). Using cellulases and hemicellulases to improve better extraction of carotenoids from the sepals of Physalis Alkekengi L. Bulletin U.A.S.V.M. Journal of Animal Science and Biotechnologies, 66, 1–2.Google Scholar
  205. 205.
    Lavecchia, R., & Zuorro, A. (2010). Enhanced lycopene recovery from tomato processing waste by enzymatic degradation of plant tissue components. International Review of Biophysical Chemistry, 1, 63–69.Google Scholar
  206. 206.
    Ranveer, C. R., Patil, S. N., & Akshya, K. (2013). Sahoo effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food and Bioproducts Processing, 91, 370–375.CrossRefGoogle Scholar
  207. 207.
    Choudhari, S. M., & Ananthanarayan, L. (2007). Enzyme aided extraction of lycopene from tomato tissues. Food Chemistry, 102, 77–81.CrossRefGoogle Scholar
  208. 208.
    Zuorroa, A., Fidaleob, M., & Lavecchiaa, R. (2011). Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme and Microbial Technology, 49, 567–573.CrossRefGoogle Scholar
  209. 209.
    Puri, M., Sharma, D., & Barrow, C. J. (2011). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30, 37–44.CrossRefGoogle Scholar
  210. 210.
    Chari, K. L. N., Manasa, D., Srinivas, P., & Sowbhagya, H. B. (2013). Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry, 139, 509–514.CrossRefGoogle Scholar
  211. 211.
    Miron, T. L., Herrero, M., & Ibanez, E. (2013). Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. Journal of Chromatography A, 1288, 1–9.CrossRefGoogle Scholar
  212. 212.
    Chen, S., Xing, X. H., Huang, J. J., & Xu, M. S. (2010). Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme and Microbial Technology, 48, 100–105.CrossRefGoogle Scholar
  213. 213.
    Gil-Chavez, G. J., Villa, J. A., Ayala-Zavala, J. F., Heredia, J. B., Sepulveda, D., Yahia, E. M., & Gonzalez-Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Comprehensive Reviews in Food Science and Food Safety, 12, 5–23.CrossRefGoogle Scholar
  214. 214.
    Fu, Y. J., Liu, W., Zu, Y. G., Tong, M. H., Li, S. M., Yan, M. M., Efferth, T., & Luo, H. (2008). Enzyme-assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Mill sp.] leaves. Food Chemistry, 111, 508–512.CrossRefGoogle Scholar
  215. 215.
    Wiatr, C.L. (1990). Application of cellulase to control industrial slime. US Patent. 4936994.Google Scholar
  216. 216.
    Hernandez-Mena, R., & Friend, P.L. (1993). Enzyme treatment for industrial slime control. US Patent. 5238572.Google Scholar
  217. 217.
    Orgaz, B., Kives, J., Pedregosa, A. M., Monistrol, I. F., Laborda, F., & Jose, C. S. (2006). Bacterial biofilm removal using fungal enzymes. Enzyme and Microbial Technology, 40, 51–56.CrossRefGoogle Scholar
  218. 218.
    Kumar, M. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. US Patent. 20080019956.Google Scholar
  219. 219.
    Barnett, C.C., Manoj, K., & Whited, G.M. (2011). Enzymatic prevention and control of biofilm. US Patent. 20110195059.Google Scholar
  220. 220.
    Wilkins, M. R., Widmer, W. W., Grohmann, K., & Cameron, R. G. (2007). Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology, 98, 1596–1601.CrossRefGoogle Scholar
  221. 221.
    Milala, M. A., Shehu, B. B., Zanna, H., & Omosioda, V. O. (2009). Degradation of agro-waste by cellulase from Aspergillus candidus. Asian Journal of Biotechnology, 1, 51–56.CrossRefGoogle Scholar
  222. 222.
    Soni, S.K., Bansal, N., Kaur, H., & Soni, R. (2009). in Process development for the bioconversion of citrus fruit waste into second generation alcohol: New Frontiers in Biofuels (eds Sharma, P.B. & Kumar, N. eds.), Scietech Publishers Pvt Ltd., Chennai, India, pp. 499–507.Google Scholar
  223. 223.
    Li, B. Z., Balan, V., Yuan, Y. J., & Dale, B. E. (2010). Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresource Technology, 101, 1285–1292.CrossRefGoogle Scholar
  224. 224.
    Geddes, C. C., Mullinnix, M. T., Nieves, I. U., Peterson, J. J., Hoffman, R. W., York, S. W., Yomano, L. P., Miller, E. N., Shanmugam, K. T., & Ingram, L. O. (2011). Simplified process for ethanol production from sugarcane bagasse using hydrolysate resistant Escherichia coli strain MM 160. Bioresource Technology, 102, 2702–2711.CrossRefGoogle Scholar
  225. 225.
    Nakashima, K., Yamaguchi, K., Taniguchi, N., Arai, S., Yamada, R., Katahira, S., Ishida, N., Ogino, C., & Kondo, A. (2011). Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chemistry, 13, 2948–2953.CrossRefGoogle Scholar
  226. 226.
    Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32, 1341–1346.CrossRefGoogle Scholar
  227. 227.
    Bansal, N., Janveja, C., Tewari, R., Soni, R., & Soni, S. K. (2014). Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: Properties and application for cellulose hydrolysis. Applied Biochemistry and Biotechnology, 172, 141–156.CrossRefGoogle Scholar
  228. 228.
    Soni, S. K., Batra, N., Bansal, N., & Soni, R. (2010). Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus species S4B2F. BioResources, 5, 741–757.Google Scholar
  229. 229.
    Celiktas, M. S., Kirsch, C., & Smirnova, I. (2014). Cascade processing of wheat bran through a biorefinery approach. Energy Conversion and Management, 84, 633–639.CrossRefGoogle Scholar
  230. 230.
    Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32, 1216–1236.CrossRefGoogle Scholar
  231. 231.
    Hughes, S. R., López-Núñez, J. C., Jones, M. A., Moser, B. R., Cox, E. J., Lindquist, M., Galindo-Leva, L. A., Riaño-Herrera, N. M., Rodriguez-Valencia, N., Gast, F., Cedeño, D. L., Tasaki, K., Brown, R. C., Darzins, A., & Brunner, L. (2014). Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Applied Microbiology and Biotechnology, 98, 8413–8431.CrossRefGoogle Scholar
  232. 232.
    Kıran, E. U., Trzcinskia, A. P., & Liu, Y. (2015). Platform chemical production from food wastes using a biorefinery concept. Journal of Chemical Technology and Biotechnology, 90, 1364–1379.CrossRefGoogle Scholar
  233. 233.
    Elliston, A., Samuel, R. A. C., Faulds, C. B., Roberts, I. N., & Waldron, K. W. (2014). Biorefining of waste paper biomass: Increasing the concentration of glucose by optimising enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 172, 3621–3634.CrossRefGoogle Scholar
  234. 234.
    Meleiro, L. P., Zimbardi, A. L. R. L., Souza, F. H. M., Masui, D. C., Silva, T. M., Jorge, J. A., & Furriel, R. P. M. (2014). A novel β-glucosidase from Humicola insolens with high potential for untreated waste paper conversion to sugars. Applied Biochemistry and Biotechnology, 173, 391–408.CrossRefGoogle Scholar
  235. 235.
    Elliston, A., Collins, S. R. A., Wilson, D. R., Roberts, I. N., & Waldron, K. W. (2013). High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresource Technology, 134, 117–126.CrossRefGoogle Scholar
  236. 236.
    Peng, L. C., & Chen, Y. C. (2011). Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae. Biomass and Bioenergy, 35, 1600–1606.CrossRefGoogle Scholar
  237. 237.
    Prasetyo, J., Naruse, K., Kato, T., Boonchird, C., Harashima, S., & Park, E. Y. (2011). Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels, 4, 35.CrossRefGoogle Scholar
  238. 238.
    Zhang, J. Y., & Lynd, L. R. (2010). Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnology and Bioengineering, 107, 235–244.CrossRefGoogle Scholar
  239. 239.
    Shen, J. C., & Agblevor, F. A. (2011). Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioprocess and Biosystems Engineering, 34, 33–43.CrossRefGoogle Scholar
  240. 240.
    Kang, L., Wang, W., & Lee, Y. Y. (2010). Bioconversion of Kraft paper mill sludges to ethanol by SSF and SSCF. Applied Biochemistry and Biotechnology, 161, 53–66.CrossRefGoogle Scholar
  241. 241.
    Kang, L., Wang, W., Pallapolu, V. R., & Lee, Y. Y. (2011). Enhanced ethanol production from de-ashed paper sludge by simultaneous saccharification and fermentation and simultaneous saccharification and co-fermentation. Bioresources, 6, 3791–3808.Google Scholar
  242. 242.
    Prasetyo, J., Kato, T., & Park, E. Y. (2010). Efficient cellulase-catalyzed saccharification of untreated paper sludge targeting for biorefinery. Biomass and Bioenergy, 34, 1906–1913.CrossRefGoogle Scholar
  243. 243.
    Zhong, Y., Ruan, Z., Zhong, Y., Archer, S., Liu, Y., & Liao, W. (2015). A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation. Bioresource Technology, 179, 173–179.CrossRefGoogle Scholar
  244. 244.
    Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. C., & Balan, V. (2015). Microbial lipid-based lignoceullulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 33, 43–54.CrossRefGoogle Scholar
  245. 245.
    Huang, W., Niu, H., Li, Z., He, Y., Gong, W., & Gong, G. (2008). Optimization of ellagic acid production from ellagitannins by co-culture and correlation between its yield and activities of relevant enzymes. Bioresource Technology, 99, 769–775.CrossRefGoogle Scholar
  246. 246.
    Bhanja, T., Kumari, A., & Banerjee, R. (2009). Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresource Technology, 100, 2861–2866.CrossRefGoogle Scholar
  247. 247.
    Do, Y. K., Kim, J. M., Chang, S. M., Hwang, J. H., & Kim, W. S. (2009). Enhancement of polyphenol bio-activities by enzyme reaction. Journal of Molecular Catalysis B: Enzymatic, 56, 173–178.CrossRefGoogle Scholar
  248. 248.
    Chen, H. L., Fan, Y. H., Chen, M. E., & Chan, Y. (2005). Unhydrolysed and hydrolysed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. Nutrition, 21, 1059–1064.CrossRefGoogle Scholar
  249. 249.
    Al-Ghazzewi, F. H., Khanna, S., Tester, R. F., & Piggott, J. (2007). The potential use of hydrolysed konjac glucomannan as a prebiotic. Journal of the Science of Food and Agriculture, 87, 1758–1766.CrossRefGoogle Scholar
  250. 250.
    Huang, D., Liu, Q., Yang, F. & Huang, F. (2007). The health-promoting function and the application of konjac mannooligosaccharides (KMOS). Food Science and Technology. 159–161.Google Scholar
  251. 251.
    Albrecht, S., Muiswinkel, G. C. J. V., Schols, H. A., Voragen, A. G. J., & Gruppen, H. (2009). Introducing capillary electrophoresis with laserinduced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behaviour. Journal of Agricultural and Food Chemistry, 57, 3867–3876.CrossRefGoogle Scholar
  252. 252.
    Connolly, M. L., Lovegrove, J., & Touhy, K. M. (2010). Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. Journal of Functional Foods, 2, 219–224.CrossRefGoogle Scholar
  253. 253.
    Alvaro, A., Sola, R., Rosales, R., Ribalta, J., Anguera, A., Masana, L., & Vallve, J. C. (2008). Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life, 60, 757–764.CrossRefGoogle Scholar
  254. 254.
    Al-Ghazzewi, F. H., & Tester, R. F. (2012). Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. Journal of the Science of Food and Agriculture, 92, 2394–2396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amita Sharma
    • 1
  • Rupinder Tewari
    • 1
  • Susheel Singh Rana
    • 2
  • Raman Soni
    • 3
  • Sanjeev Kumar Soni
    • 2
    Email author
  1. 1.Department of Microbial BiotechnologyPanjab UniversityChandigarhIndia
  2. 2.Department of MicrobiologyPanjab UniversityChandigarhIndia
  3. 3.Department of BiotechnologyD.A.V. CollegeChandigarhIndia

Personalised recommendations