Advertisement

Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1309–1324 | Cite as

An Overview of Phytoconstituents, Biotechnological Applications, and Nutritive Aspects of Coconut (Cocos nucifera)

  • Selvaraj Mohana RoopanEmail author
Article

Abstract

Cocos nucifera is one of the highest nutritional and medicinal value plants with various fractions of proteins which play a major role in several biological applications such as anti-microbial, anti-inflammatory, anti-diabetic, anti-neoplastic, anti-parasitic, insecticidal, and leishmanicidal activities. This review is focused on several biotechnological, biomedical aspects of various solvent extracts collected from different parts of coconut and the phytochemical constituents which are present in it. The results obtained from this source will facilitate most of the researchers to focus their work toward the process of diagnosing diseases in future.

Keywords

Phytoconstituents Anti-diabetic Anti-inflammatory Anti-parasitic Biological applications Cocos nucifera Various extracts 

Notes

Acknowledgments

Authors thank the reviewers for their helpful comments and suggestions as well as the management of VIT University for providing all research facilities to carry out the literature survey work which was helpful for clubbing this review article. The Authors are also thankful to DBT (No. BT/PR6891/GBT/27/491/2012) for providing financial support to conduct further research process.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Clearance

The current manuscript discuss on the phytoconstituents, biotechnological aspect and nutritive focus on coconut. The authors have not used any animals for their studies.

References

  1. 1.
    Kamaraj, C., Rahuman, A. A., Roopan, S. M., Marimuthu, S., & Kirthi, A. V. (2014). Bioassay guided isolation and characterization of active antiplasmodial compounds from Murraya Koenigii extracts against Plasmodium falciparum and Plasmodium berghei. Parasitology Research, 113, 1657–1672.CrossRefGoogle Scholar
  2. 2.
    Madhumitha, G., Rajakumar, G., Roopan, S. M., Rahuman, A. A., Priya, K. M., Saral, A. M., Khan, F. N., Khanna, V. G., Velayutham, K., Jayaseelan, C., Kamaraj, C., & Elango, G. (2012). Acaricidal, Insecticidal, and larvicidal efficacy of fruit peel aqueous extract of Annona squamosa and its compounds against blood-feeding parasites. Parasitology Research, 111, 2189–2199.CrossRefGoogle Scholar
  3. 3.
    Madhumitha, G., & Roopan, S. M. (2013). Devastated crops: multifunctional efficacy for the production of nanoparticles. Journal of Nanomaterials, 951858, 1–12.CrossRefGoogle Scholar
  4. 4.
    Madhumitha, G., & Saral, A. M. (2009). Free radical scavenging assay of Thevetia nerüfolia leaf extracts. Asian Journal of Chemistry, 21, 2468–2470.Google Scholar
  5. 5.
    Kumar, D. A., Palanichamy, V., & Roopan, S. M. (2014). Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochimica Acta, Part A, 127, 168–171.CrossRefGoogle Scholar
  6. 6.
    Bharathi, A., Roopan, S. M., Kajbafvala, A., Padmaja, R. D., Darsana, M. S., & Kumari, G. N. (2014). Catalytic activity of TiO2 nanoparticles in the synthesis of some 2,3-disubstituted dihydroquinazolin-4(1H)-ones. Chinese Chemical Letters, 25, 324–326.CrossRefGoogle Scholar
  7. 7.
    Roopan, S. M., & Khan, F. N. (2010). ZnO nanoparticles in the synthesis of AB ring core of camptothecin. Chemical Papers, 64, 812–817.Google Scholar
  8. 8.
    Roopan, S. M., & Khan, F. N. (2011). SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-Indolo[3,2-c]acridine derivatives. Medicinal Chemistry Research, 20, 732–737.CrossRefGoogle Scholar
  9. 9.
    Roopan, S. M., Bharathi, A., Kumar, R., Khanna, V. G., & Prabhakarn, A. (2012). Acaricidal, insecticidal and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids and Surfaces, B: Biointerfaces, 92, 209–212.CrossRefGoogle Scholar
  10. 10.
    Roopan, S. M., Bharathi, A., Prabhakarn, A., Rahuman, A. A., Velayutham, K., Rajakumar, Padmaja, R. D., Lekshmi, M., & Madhumitha, G. (2012). Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparicles using Annona squamosa peel extract. Spectrochimica Acta A, 98, 86–90.CrossRefGoogle Scholar
  11. 11.
    Roopan, S. M., Rohit, Madhumitha, G., Rahuman, A. A., Kamaraj, C., Bharathi, A., & Surendra, T. V. (2013). Low-cost and ecofriendly phytosynthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43, 631–635.CrossRefGoogle Scholar
  12. 12.
    Ramezani, F., Jebali, A., & Kazemi, B. (2012). A green approach for synthesis of gold and silver nanoparticles by Leishmania sp. Applied Biochemistry and Biotechnology, 168, 1549–1555.CrossRefGoogle Scholar
  13. 13.
    Momeni, S., & Nabipour, I. (2015). A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Applied Biochemistry and Biotechnology, 176, 1937–1949.CrossRefGoogle Scholar
  14. 14.
    Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Applied Biochemistry and Biotechnology, 173, 318–331.CrossRefGoogle Scholar
  15. 15.
    Priyadarshini, R. I., Prasannaraj, G., Geetha, N., & Venkatachalam, P. (2014). Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human pc3 cell lines. Applied Biochemistry and Biotechnology, 174, 2777–2790.CrossRefGoogle Scholar
  16. 16.
    Borase, H. P., Salunke, B. K., Salunkhe, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology, 173, 1–29.CrossRefGoogle Scholar
  17. 17.
    Patil, S. V., Borase, H. P., Patil, C. D., & Salunke, B. K. (2012). Biosynthesis of silver nanoparticles using latex from few Euphorbian plants and their antimicrobial potential. Applied Biochemistry and Biotechnology, 167, 776–790.CrossRefGoogle Scholar
  18. 18.
    Roopan, S. M., & Elango, G. (2015). Exploitation of Cocos nucifera a non-food toward the biological and nanobiotechnology field. Industrial Crops and Products, 67, 130–136.CrossRefGoogle Scholar
  19. 19.
    Yong, J. W., Ge, L., Ng, Y. F., & Tan, S. N. (2009). the chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules, 14, 5144–5164.CrossRefGoogle Scholar
  20. 20.
    Calzada, F., Yepez-Mulia, L., & Tapia-Contreras, A. (2007). Effect of Mexican medicinal plant used to treat Trichomoniasis on Trichomonas vaginalis trophozoites. Journal of Ethnopharmacology, 113, 248–251.CrossRefGoogle Scholar
  21. 21.
    Weniger, B., Rouzier, M., Daguilh, R., Henrys, D., Henrys, J. H., & Anton, R. (1986). Traditional medicine in the Central Plateau of Haiti. 2. Ethnopharmacologic inventory. Journal of Ethnopharmacology, 17, 13–30.CrossRefGoogle Scholar
  22. 22.
    Caceres, A., Giron, L. M., Alvarado, S. R., & Torres, M. F. (1987). Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of dermatomucosal diseases. Journal of Ethnopharmacology, 20, 223–237.CrossRefGoogle Scholar
  23. 23.
    Puertollano, C. L., Banzon, J., & Steinkraus, K. H. (1970). Separation of the oil and protein fractions in coconut (Cocos nucifera) by fermentation. Journal of Agricultural and Food Chemistry, 18, 579–584.CrossRefGoogle Scholar
  24. 24.
    Yuan, Y., Chen, Y., Yan, S., Liang, Y., Zheng, Y., & Dongdong, L. (2014). Molecular cloning and characterization of an acyl carrier protein thio-esterase gene (CocoFatB1) expressed in the endosperm of coconut (Cocos nucifera) and its heterologous expression in Nicotiana tabacum to engineer the accumulation of different fatty acids. Functional Plant Biology, 41, 80–86.CrossRefGoogle Scholar
  25. 25.
    Roopan, S. M., Surendra, T. V., Elango, G., & Kumar, S. H. S. (2014). Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Applied Microbiology and Biotechnology, 98, 5289–5300.CrossRefGoogle Scholar
  26. 26.
    Elango, G., & Roopan, S. M. (2015). Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochimica Acta A, 139, 367–373.CrossRefGoogle Scholar
  27. 27.
    Madhumitha, G., Elango, G., & Roopan, S. M. (2016). Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Applied Microbiology and Biotechnology, 100, 571–581.CrossRefGoogle Scholar
  28. 28.
    Singh, Y. N. (1986). Traditional medicine in Fiji: some herbal folk cures used by Fiji Indians. Journal of Ethnopharmacology, 15, 57–88.CrossRefGoogle Scholar
  29. 29.
    Yartey, J., Harisson, E. K., Brakohiapa, L. A., & Nkrumah, F. K. (1993). Carbohydrate and electrolyte content of some home available fluids used for oral rehydration in Ghana. Journal of Tropical Pediatrics, 39, 234–237.CrossRefGoogle Scholar
  30. 30.
    Hope, B. E., Massey, D. G., & Fournier-Massey, G. (1993). Hawaiian material medica for asthma. Hawaii Medical Journal, 52, 160–166.Google Scholar
  31. 31.
    Mandal, M. D., & Mandal, S. (2011). Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Journal of Tropical Medicine, 4, 241–247.CrossRefGoogle Scholar
  32. 32.
    Oyi, A. R., Onaolapo, J. A., & Obi, R. C. (2010). Formulation and antimicrobial studies of coconut (Cocos nucifera Linn) oil. Research Journal of Applied Sciences, Engineering and Technology, 2, 133–137.Google Scholar
  33. 33.
    Silva, R. R., Silva, D. O., Fontes, H. R., Alviano, C. S., Fernandes, P. D., & Alviano, D. S. (2013). Anti-inflammatory: antioxidant and antimicrobial activities of Cocos nucifera var. typica. BMC Complementary and Alternative Medicine, 13, 1–8.CrossRefGoogle Scholar
  34. 34.
    Esquenazi, D., Wigg, M. D., Miranda, M. M., Rodrigues, H. M., Tostes, J. B., Rozental, S., Silva, A. J., & Alviano, C. S. (2014). Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn: (Palmae) husk fiber extract. Research in Microbiology, 153, 647–652.CrossRefGoogle Scholar
  35. 35.
    Arora, R., Chawla, R., Marwah, R., Arora, P., Sharma, R. K., Kaushik, V., Goel, R., Kaur, A., Silambarasan, M., Tripathi, R. P., & Bharadwaj, J. R. (2011). Potential of complementary and alternative medicine in preventive management of novel H1N1 flu (Swine flu) pandemic: thwarting potential disasters in the bud. Evidence-based Complementary and Alternative Medicine, 586506, 1–16.CrossRefGoogle Scholar
  36. 36.
    Jose, M., Sharma, B. B., & Shantaram, M. (2011). Ethno medicinal herbs used in oral health and hygiene in coastal Dakshina Kannada. Journal of Oral Health & Community Dentistry, 5, 107–111.Google Scholar
  37. 37.
    Lima, E. B. C., Sousa, C. N. S., Meneses, L. N., Ximenes, N. C., Santos-Junior, M. A., Vasconcelos, G. S., Lima, N. B. C., Macedo, D., & Vasconcelos, S. M. M. (2015). Cocos nucifera Linn (Arecaceae): a phytochemical and pharmacological review. Brazilian Journal of Medical and Biological Research, 00, 1–12.Google Scholar
  38. 38.
    Awua, A. K., Doe, E. D., & Agyare, R. (2012). Potential bacterial health risk posed to consumers of fresh coconut (Cocos nucifera L.) water. Food and Nutrition Science, 3, 1136–1143.CrossRefGoogle Scholar
  39. 39.
    Viju, N., Satheesh, S., & Vincent, S. G. P. (2013). Antibiofilm activity of coconut (Cocos nucifera Linn.) husk fibre extract. Saudi Journal of Biological Sciences, 20, 85–91.CrossRefGoogle Scholar
  40. 40.
    Intahphuak, S., Khonsung, P., & Panthon, A. (2010). Anti-inflammatory analgesic, and antipyretic activities of virgin coconut oil. Pharmaceutical Biology, 48, 151–157.CrossRefGoogle Scholar
  41. 41.
    Naskar, S., Mazumder, U. K., Pramanik, G., Saha, P., Haldar, P. K., & Gupta, M. (2013). Evaluation of antinociceptive and anti-inflammatory activity of hydromethanol extract of Cocos nucifera. Journal of Inflammopharmacology, 21, 31–35.CrossRefGoogle Scholar
  42. 42.
    Ajeigbe, K. O., Ndaman, Z. A., Amegor, O. F., Onifade, A. A., Asuk, A. A., Ibironke, G. F., & Olaleye, S. B. (2011). Anti-nociceptive and anti-inflammatory potential ofcoconut water (Cocos nucifera L.) in rats and mice. Australian Journal of Basic and Applied Sciences, 5, 1116–1122.Google Scholar
  43. 43.
    Srivastava, P., & Durgaprasad, S. (2008). Burn wound healing property of Cocos nucifera: an appraisal. The Indian Journal of Pharmacology, 40, 144–146.CrossRefGoogle Scholar
  44. 44.
    Radenahmad, N., Saleh, F., Sayoh, I., Sawangjaroen, K., Subhadhirasakul, P., Boonyoung, P., Rundorn, W., & Mitranun, W. (2012). Young coconut juice can accelerate the healing process of cutaneous wounds. BMC Complementary and Alternative Medicine, 12, 1–10.CrossRefGoogle Scholar
  45. 45.
    Salil, G., Nevin, K. G., & Rajamohan, T. (2001). Argenine rich coconut kernel protein modulates in alloxan treated rats. Chemico- Biological Interactions, 89, 107–111.Google Scholar
  46. 46.
    Preetha, P. P., Girija Devi, V., & Rajamohan, T. (2013). Antihyperlipidemic effects of mature coconut water and its role in regulating lipid metabolism in alloxan-induced experimental diabetes. Comparative Clinical Pathology, 23, 1331–1337.CrossRefGoogle Scholar
  47. 47.
    Renjith, R. S., Chikku, A. M., & Rajamohan, T. (2013). Cytoprotective, antihyperglycemic and phytochemical properties of Cocos nucifera (L.) inflorescence. Asian Pacific Journal of Tropical Medicine, 6, 804–810.CrossRefGoogle Scholar
  48. 48.
    Costa, C. T., Bevilaqua, C. M., Morais, S. M., Camurca-Vasconcelo, A. L., Maciel, M. V., Braga, R. R., & Oliveira, M. M. (2010). Anthelmintic activity of Cocos nucifera L. on intestinal nematodes of mice. Research in Veterinary Science, 88, 101–103.CrossRefGoogle Scholar
  49. 49.
    Koschek, P. R., Alviano, D. S., Alviano, C. S., & Gattass, C. R. (2007). The husk fiber of Cocos nucifera L. (Palmae) is a source of antineoplastic activity. Brazilian Journal of Medical and Biological Research, 40, 1339–1343.CrossRefGoogle Scholar
  50. 50.
    Filho, R. R. M., Rodrigues, I. A., Alviano, D. S., Santos, A. L., Soares, R. M., Alviano, C. S., Lopes, A. H., & Rosa, M. S. (2004). Leishmanicidal activity of poly-phenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae). Research in Microbiology, 155, 136–143.CrossRefGoogle Scholar
  51. 51.
    Dowd, P. F., Johnson, E. T., Vermillion, K. E., Berhow, M. A., & Palmquist, D. E. (2011). Coconut leaf bioactivity toward generalist maize insect pests. Entomologia Experimentalis et Applicata, 141, 208–215.CrossRefGoogle Scholar
  52. 52.
    Adebayo, J. O., Balogun, E. A., Malomo, S. O., Soladoye, A. O., Olatunji, L. A., Kolawole, O. M., Oguntoye, O. S., Babatunde, A. S., Akinola, O. B., Aguiar, A. C. C., Andrade, I. M., Souza, N. B., & Krettli, A. U. (2013). Antimalarial activity of Cocos nucifera husk fibre: further studies. Evidence-Based Complementary and Alternative Medicine, 742496, 1–9.CrossRefGoogle Scholar
  53. 53.
    Masumbuko, L. I., Sinje, S., & Kullaya, A. (2014). Genetic diversity and structure of east African tall coconuts in Tanzania using RAPD markers. Open Journal of Genetics, 4, 175–181.CrossRefGoogle Scholar
  54. 54.
    Almeida, T. M., Bispo, M. D., Cardoso, A. R. T., Migliorini, M. V., Schena, T., de Campos, M. C. V., Machado, M. E., López, J. A., Krause, L. C., & Caramão, E. B. (2013). Preliminary studies of bio-oil from fast pyrolysis of coconut fibers. Journal of Agricultural and Food Chemistry, 61, 6812–6821.CrossRefGoogle Scholar
  55. 55.
    Liya, G., Yong, J. W. H., Tan, S. N., & Ong, E. S. (2006). Determination of cytokinins in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry. Electrophoresis, 27, 2171–2181.CrossRefGoogle Scholar
  56. 56.
    Liya, G., Yong, J. W. H., Tan, S. N., Hua, L., & Ong, E. S. (2008). Analyses of gibberellins in coconut (Cocos nucifera L.) water by partial filling-micellar electrokinetic chromatography-mass spectrometry with reversal of electroosmotic flow. Electrophoresis, 29, 2126–2134.CrossRefGoogle Scholar
  57. 57.
    Liya, G., Yonga, J. W. H., Tana, S. N., Yang, X. H., & Ong, E. S. (2004). Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction. Journal of Chromatography A, 1048, 119–126.CrossRefGoogle Scholar
  58. 58.
    Freitas, J. C. C., Nunes-Pinheiro, D. C. S., Pessoa, A. W. P., Silva, L. C. R., Girão, V. C. C., & Lopes-Neto, B. E. (2011). Effect of ethyl acetate extract from husk fiber water of Cocos nucifera in Leishmania braziliensis infected hamsters. Revista Brasileira de Farmacognosia, 21, 1006–1011.CrossRefGoogle Scholar
  59. 59.
    Roopan, S. M., Kumar, S. H. S., Madhumitha, G., & Suthindhiran, K. (2015). BI ogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Applied Biochemistry and Biotechnology, 175, 1567–1575.CrossRefGoogle Scholar
  60. 60.
    Pal, D., Sarkar, A., Gain, S., Jana, S., & Mandal, S. (2011). CNS depressant activities of roots of Coccos nucifera in mice. Acta Poloniae Pharmaceutica, 68, 249–254.Google Scholar
  61. 61.
    Arlee, R., Suanphairoch, S., & Pakdeechanuan, P. (2013). Differences in chemical components and antioxidant-related substances in virgin coconut oil from coconut hybrids and their parentes. International Food Research Journal, 20, 2103–2109.Google Scholar
  62. 62.
    Salil, G., & Rajamohan, T. (2001). Hypolipidemic and antiperoxidative effect of coconut protein in hypercholesterolemic rats. Indian Journal of Experimental Biology, 39, 1028–1034.Google Scholar
  63. 63.
    Erosa, F. E., Gamboa-León, M. R., Lecher, J. G., Arroyo-Serralta, G. A., Zizumbo-Villareal, D., & Oropeza-Salín, C. (2002). Major components from the epicuticular wax of Cocos nucifera. Revista de la Sociedad Quimica de Mexico, 46, 247–250.Google Scholar
  64. 64.
    Tangwatcharin, P., & Khopaibool, P. (2012). Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus. Southeast Asian Journal of Tropical Medicine and Public Health, 43, 969–985.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations