Skip to main content
Log in

Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To date, two types of glycerol dehydratases have been reported: coenzyme B12-dependent and coenzyme B12-independent glycerol dehydratases. The three-dimensional structure of the former is a dimer of αβγ heterotrimer, while that of the latter is a homodimer. Their mechanisms of reaction are typically enzymatic radical catalysis. Functional radical in both the glycerol dehydratases is the adenosyl radical. However, the adenosyl radical in the former originates from coenzyme B12 by homolytic cleavage, and that in the latter from S-adenosyl-methionine. Until some years ago, Clostridium butyricum VPI 1718 was the only microorganism known to possess B12-independent glycerol dehydratase, but since then, several other bacteria with this unique capability have been identified. This article focuses on the glycerol dehydratases and on 1,3-propanediol production from glycerol by naturally occurring and genetically engineered bacterial strains containing glycerol dehydratase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Brien, J. R., Raynaud, C., Croux, C., Girbal, L., Soucaille, P., & Lanzilotta, W. N. (2004). Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry, 43(16), 4635–4645.

    Article  Google Scholar 

  2. Kraus, G. A. (2008). Synthetic methods for the preparation of 1,3-propanediol. CLEAN – Soil, Air, Water, 36(8), 648–651.

    Article  CAS  Google Scholar 

  3. Hao, J., Lin, R., Zheng, Z., Liu, H., & Liu, D. (2008). Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World Journal of Microbiology and Biotechnology, 24(9), 1731–1740.

    Article  CAS  Google Scholar 

  4. Jun, S. A., Moon, C., Kang, C. H., Kong, S. W., Sang, B. I., & Um, Y. (2010). Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 161(1–8), 491–501.

    Article  CAS  Google Scholar 

  5. Huang, H., Gong, C. S., & Tsao, G. T. (2002). Production of 1,3-propanediol by Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 98–100, 687–698.

    Article  Google Scholar 

  6. Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends in Biotechnology, 31(1), 20–28.

    Article  CAS  Google Scholar 

  7. Dasari, M. A., Kiatsimkul, P.-P., Sutterlin, W. R., & Suppes, G. J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis A: general, 281(1), 225–231.

    Article  CAS  Google Scholar 

  8. Durgapal, M., Kumar, V., Yang, T. H., Lee, H. J., Seung, D., & Park, S. (2014). Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Bioresource Technology, 159, 223–231.

    Article  CAS  Google Scholar 

  9. Fan, X., Burton, R., & Zhou, Y. (2010). Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals—mini review ~ !2009-08-26 ~ !2010-02-02 ~ !2010-04-09 ~ ! The Open Fuels & Energy Science Journal, 3(1), 17–22.

    Article  CAS  Google Scholar 

  10. Pflugl, S., Marx, H., Mattanovich, D., & Sauer, M. (2014). Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresource Technology, 152, 499–504.

    Article  Google Scholar 

  11. Rossi, D. M., de Souza, E. A., Flores, S. H., & Ayub, M. A. Z. (2012). Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia. Renewable Energy, 39(1), 223–227.

    Article  CAS  Google Scholar 

  12. de Souza, E. A., Rossi, D. M., & Ayub, M. A. Z. (2014). Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol using immobilized cells of Klebsiella pneumoniae BLh-1. Renewable Energy, 72, 253–257.

    Article  Google Scholar 

  13. Renewables 2015 Global Status Report. REN21. c/o UNTP, 15 Rue de Milan, F-75441 Paris CEDEX 09, France ISBN 978-3-9815394-6-4.

  14. ten Dam, J., & Hanefeld, U. (2011). Renewable chemicals: dehydroxylation of glycerol and polyols. ChemSusChem, 4(8), 1017–1034.

    Article  Google Scholar 

  15. Ahrens, K., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1998). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnology and Bioengineering, 59(5), 544–552.

    Article  CAS  Google Scholar 

  16. Toraya, T. (2000). Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases. Cellular and Molecular Life Sciences, 57(1), 106–127.

    Article  CAS  Google Scholar 

  17. Toraya, T. (2003). Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions. Chem Rev, 103(6), 2095–2127.

    Article  CAS  Google Scholar 

  18. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, C., & Soucaille, P. (2003). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5010–5015.

    Article  CAS  Google Scholar 

  19. Liao, D. I., Dotson, G., Turner, I., Jr., Reiss, L., & Emptage, M. (2003). Crystal structure of substrate free form of glycerol dehydratase. Journal of Inorganic Biochemistry, 93(1–2), 84–91.

    Article  CAS  Google Scholar 

  20. Yamanishi, M., Yunoki, M., Tobimatsu, T., Sato, H., Matsui, J., Dokiya, A., Iuchi, Y., Oe, K., Suto, K., Shibata, N., et al. (2002). The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol. European Journal of Biochemistry, 269(18), 4484–4494.

    Article  CAS  Google Scholar 

  21. Liu, Y., Gallo, A. A., Bajpai, R. K., Chistoserdov, A., Nelson, A. T., Segura, L. N., & Xu, W. (2010). The diversity and molecular modelling analysis of B12-dependent and B12-independent glycerol dehydratases. Int ernational Journal of Bioinformatics Research and Applications, 6(5), 484–507.

    Article  CAS  Google Scholar 

  22. Shibata, N., Masuda, J., Tobimatsu, T., Toraya, T., Suto, K., Morimoto, Y., & Yasuoka, N. (1999). A new mode of B12 binding and the direct participation of a potassium ion in enzyme catalysis: X-ray structure of diol dehydratase. Structure, 7(8), 997–1008.

    Article  CAS  Google Scholar 

  23. Sun, J., van den Heuvel, J., Soucaille, P., Qu, Y., & Zeng, A. P. (2003). Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnology Progress, 19(2), 263–272.

    Article  CAS  Google Scholar 

  24. Seo, M. Y., Seo, J. W., Heo, S. Y., Baek, J. O., Rairakhwada, D., Oh, B. R., Seo, P. S., Choi, M. H., & Kim, C. H. (2009). Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Applied Microbiology and Biotechnology, 84(3), 527–534.

    Article  CAS  Google Scholar 

  25. Seifert, C., Bowien, S., Gottschalk, G., & Daniel, R. (2001). Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. European Journal of Biochemistry, 268(8), 2369–2378.

    Article  CAS  Google Scholar 

  26. Padmakumar, R., Taoka, S., Padmakumar, R., & Banerjee, R. (1995). Coenzyme B12 is coordinated by histidine and not dimethylbenzimidazole on methylmalonyl-CoA mutase. Journal of the American Chemical Society, 117(26), 7033–7034.

    Article  CAS  Google Scholar 

  27. Gonzalez-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J. C., Vasconcelos, I., & Soucaille, P. (2005). Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Engineering, 7(5–6), 329–336.

    Article  CAS  Google Scholar 

  28. Scott, K. P., Martin, J. C., Campbell, G., Mayer, C. D., & Flint, H. J. (2006). Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. Journal of Bacteriology, 188(12), 4340–4349.

    Article  CAS  Google Scholar 

  29. Tang, X., Tan, Y., Zhu, H., Zhao, K., & Shen, W. (2009). Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Applied and Environmental Microbiology, 75(6), 1628–1634.

    Article  CAS  Google Scholar 

  30. Jiang, W., Wang, S., Yang, Z., & Fang, B. (2015). B12-independent glycerol dehydratase and its reactivase from Clostridia butyricum: Optimizing cloning by uniform design logic. Engineering in Life Sciences, 15(5), 519–524.

    Article  CAS  Google Scholar 

  31. Frey, P. A. (2001). Radical mechanisms of enzymatic catalysis. Annual Review of Biochemistry, 70, 121–148.

    Article  CAS  Google Scholar 

  32. Abend, A., Bandarian, V., Reed, G. H., & Frey, P. A. (2000). Identification of cis-ethanesemidione as the organic radical derived from glycolaldehyde in the suicide inactivation of dioldehydrase and of ethanolamine ammonia-lyase. Biochemistry, 39(20), 6250–6257.

    Article  CAS  Google Scholar 

  33. Kozbial, P. Z., & Mushegian, A. R. (2005). Natural history of S-adenosylmethionine-binding proteins. BMC Structural Biology, 5, 19.

    Article  Google Scholar 

  34. Frey, P. A., & Reed, G. H. (2000). Radical mechanisms in adenosylmethionine- and adenosylcobalamin-dependent enzymatic reactions. Archives of Biochemistry and Biophysics, 382(1), 6–14.

    Article  CAS  Google Scholar 

  35. Layer, G., Kervio, E., Morlock, G., Heinz, D. W., Jahn, D., Retey, J., & Schubert, W. D. (2005). Structural and functional comparison of HemN to other radical SAM enzymes. Biological Chemistry, 386(10), 971–980.

    Article  CAS  Google Scholar 

  36. Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., & Miller, N. E. (2001). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Research, 29(5), 1097–1106.

    Article  CAS  Google Scholar 

  37. Frey, P. A., Hegeman, A. D., & Ruzicka, F. J. (2008). The radical SAM superfamily. Critical Reviews in Biochemistry and Molecular Biology, 43(1), 63–88.

    Article  CAS  Google Scholar 

  38. Hong, W. K., Kim, C. H., Heo, S. Y., Luo, L. H., Oh, B. R., Rairakhwada, D., & Seo, J. W. (2011). 1,3-Propandiol production by engineered Hansenula polymorpha expressing dha genes from Klebsiella pneumoniae. Bioprocess and Biosystems Engineering, 34(2), 231–236.

    Article  CAS  Google Scholar 

  39. Selembo, P. A., Perez, J. M., Lloyd, W. A., & Logan, B. E. (2009). Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnology and Bioengineering, 104(6), 1098–1106.

    Article  CAS  Google Scholar 

  40. Anand, P., & Saxena, R. K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnology, 29(2), 199–205.

    Article  CAS  Google Scholar 

  41. Liao, D. I., Reiss, L., Turner, I., & Dotson, G. (2003). Structure of glycerol dehydratase reactivase: a new type of molecular chaperone. Structure, 11(1), 109–119.

    Article  CAS  Google Scholar 

  42. Jiang, W., Li, W., Hong, Y., Wang, S., & Fang, B. (2016). Cloning, expression, mutagenesis library construction of glycerol dehydratase, and binding mode simulation of its reactivase with ligands. Applied Biochemistry and Biotechnology, 178(4), 739–752.

    Article  CAS  Google Scholar 

  43. Feliks, M., & Ullmann, G. M. (2012). Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study. The Journal of Physical Chemistry B, 116(24), 7076–7087.

  44. Kumar, S. R., & Chandrasekaran, M. (2003). Continuous production of l-glutaminase by an immobilized marine Pseudomonas sp BTMS-51 in a packed bed reactor. Process Biochemistry, 38(10), 1431–1436.

  45. Pai, S.-L., Hsu, Y.-L., Chong, N.-M., Sheu, C.-S., & Chen, C.-H. (1995). Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate. Bioresource Technology, 51(1), 37–42.

    Article  CAS  Google Scholar 

  46. Siman, R., Borges, A., Ratusznei, S., Rodrigues, J., Zaiat, M., Foresti, E., & Borzani, W. (2004). Influence of organic loading on an anaerobic sequencing biofilm batch reactor (ASBBR) as a function of cycle period and wastewater concentration. Journal of Environmental Management, 72, 241–247.

    Article  Google Scholar 

  47. Demick, J. M., & Lanzilotta, W. N. (2011). Radical SAM activation of the B12-independent glycerol dehydratase results in formation of 5′-deoxy-5′-(methylthio)adenosine and not 5′-deoxyadenosine. Biochemistry, 50(4), 440–442.

    Article  CAS  Google Scholar 

  48. Lanz, N. D., & Booker, S. J. (2015). Auxiliary iron-sulfur cofactors in radical SAM enzymes. Biochimica et Biophysica Acta, 1853(6), 1316–1334.

    Article  CAS  Google Scholar 

  49. Wagner, A. F., Frey, M., Neugebauer, F. A., Schäfer, W., & Knappe, J. (1992). The free radical in pyruvate formate-lyase is located on glycine-734. Proceedings of the National Academy of Sciences of the United States of America, 89(3), 996–1000.

    Article  CAS  Google Scholar 

  50. Wagner, A. F., Schultz, S., Bomke, J., Pils, T., Lehmann, W. D., & Knappe, J. (2001). YfiD of Escherichia coli and Y06I of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochemical and Biophysical Research Communications, 285(2), 456–462.

    Article  CAS  Google Scholar 

  51. Yang, G., Tian, J., & Li, J. (2007). Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Applied Microbiology and Biotechnology, 73(5), 1017–1024.

    Article  CAS  Google Scholar 

  52. Szymanowska-Powalowska D, Leja K: An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. In., vol. 17: scielocl; 2014: 72–78.

  53. Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnology Advances, 27(6), 895–913.

    Article  CAS  Google Scholar 

  54. Ringel, A., Wilkens, E., Hortig, D., Willke, T., & Vorlop, K.-D. (2012). An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Applied Microbiology and Biotechnology, 93(3), 1049–1056.

    Article  CAS  Google Scholar 

  55. Gungormusler, M., Gonen, C., & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess and Biosystems Engineering, 34(6), 727–733.

    Article  CAS  Google Scholar 

  56. da Silva, G. P., de Lima, C. J. B., & Contiero, J. (2015). Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catalysis Today, 257(Part 2), 259–266.

    Article  Google Scholar 

  57. Drozdzynska, A., Pawlicka, J., Kubiak, P., Kosmider, A., Pranke, D., Olejnik-Schmidt, A., & Czaczyk, K. (2014). Conversion of glycerol to 1,3-propanediol by Citrobacter freundii and Hafnia alvei—newly isolated strains from the Enterobacteriaceae. New Biotechnology, 31(5), 402–410.

    Article  CAS  Google Scholar 

  58. Jin, P., Li, S., Lu, S.-G., Zhu, J.-G., & Huang, H. (2011). Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation. Bioresource Technology, 102(2), 1815–1821.

    Article  CAS  Google Scholar 

  59. Jin, P., Lu, S.-G., Huang, H., Luo, F., & Li, S. (2011). Enhanced reducing equivalent generation for 1,3-propanediol production through cofermentation of glycerol and xylose by Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 165(7–8), 1532–1542.

    Article  CAS  Google Scholar 

  60. Cl, R., Lee, J., Sarcabal, P., Croux, C., Meynial-Salles, I., & Soucaille, P. (2011). Molecular characterization of the glycerol-oxidative pathway of Clostridium butyricum VPI 1718. Journal of Bacteriology, 193(12), 3127–3134.

    Article  Google Scholar 

  61. Chatzifragkou, A., Dietz, D., Komaitis, M., Zeng, A.-P., & Papanikolaou, S. (2010). Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnology and Bioengineering, 107(1), 76–84.

    Article  CAS  Google Scholar 

  62. Kumar, V., Sankaranarayanan, M., Durgapal, M., Zhou, S., Ko, Y., Ashok, S., Sarkar, R., & Park, S. (2013). Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase. Bioresource Technology, 135, 555–563.

    Article  CAS  Google Scholar 

  63. Zhao, Y.-N., Chen, G., & Yao, S.-J. (2006). Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochemical Engineering Journal, 32(2), 93–99.

    Article  CAS  Google Scholar 

  64. Oh, B., Hong, W., Heo, S., Luo, L., Seo, J., & Kim, C. (2013). The production of 1,3-propanediol from mixtures of glycerol and glucose by a Klebsiella pneumonia mutant deficient in carbon catabolite repression. Bioresource Technology, 130, 719–724.

    Article  CAS  Google Scholar 

  65. Tobajas, M., Mohedano, A. F., Casas, J. A., & Rodríguez, J. J. (2009). Unstructured kinetic model for reuterin and 1,3-propanediol production by Lactobacillus reuteri from glycerol/glucose cofermentation. Journal of Chemical Technology & Biotechnology, 84(5), 675–680.

    Article  CAS  Google Scholar 

  66. Chen, X., Zhang, D., Qi, W., Gao, S., Xiu, Z., & Xu, P. (2003). Microbial fed-batch production of 1, 3-propanediol by Klebsiella pneumonia under micro-aerobic conditions. Applied Microbiology and Biotechnology, 63, 143–146.

    Article  CAS  Google Scholar 

  67. Cheng, K.-K., Liu, D.-H., Sun, Y., & Liu, W.-B. (2004). 1,3-Propanediol production by Klebsiella pneumonia Under different aeration strategies. Biotechnology Letters, 26, 911–915.

    Article  CAS  Google Scholar 

  68. Jolly, J., Kitzmann, B., Ramalingam, S., & Ramachandran, K. (2014). Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. Journal of Bioscience and Bioengineering, 118(2), 188–194.

    Article  CAS  Google Scholar 

  69. Rossi, D., Souza, E., Flôres, S., & Ayub, M. (2013). Conversion of residual glycerol from biodiesel synthesis into 1, 3-propanediol by a new strain of Klebsiella pneumoniae. Renewable Energy, 55, 404–409.

    Article  CAS  Google Scholar 

  70. Casali, S., Gungormusler, M., Bertin, L., Fava, F., & Azbar, N. (2012). Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol. Biochemical Engineering Journal, 64, 84–90.

    Article  CAS  Google Scholar 

  71. Hiremath, A., Kannabiran, M., & Rangaswamy, V. (2011). 1,3-Propanediol production from crude glycerol from Jatropha biodiesel process. New Biotechnoloty, 28, 19–23.

    Article  CAS  Google Scholar 

  72. Metsoviti, M., Zeng, A., Koutinas, A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. Journal of Bacteriology, 163(4), 408–418.

    CAS  Google Scholar 

  73. Jia, J., Yang, Y., & Yu, H. (2012). Phenol degradation characteristics and immobilization of Acinebobacte strain HY1. Advanced Materials Research, 549, 172–176.

    Article  CAS  Google Scholar 

  74. Gungormusler-Yilmaz, M., Cicek, N., Levin, D. B., & Azbar, N. (2015). Cell immobilization for microbial production of 1,3-propanediol. Critical Review Biotechnology, 15, 1–13.

    Article  Google Scholar 

  75. Kalme, S., Jadhav, S., Parshetti, G., & Govindwar, S. (2010). Biodegradation of Green HE4B: co-substrate effect, biotransformation enzymes and metabolite toxicity analysis. Indian Journal of Microbiology, 50, 156–164.

    Article  CAS  Google Scholar 

  76. Oranusi, N., & Ogugbue, C. (2005). The effect of co-substrate on primary biodegradation of triphenylmethane dye by Pseudomonas sp. African Journal of Applied Zoology and Environmental Biology, 7, 38–44.

    Google Scholar 

  77. Park, J., Krumins, V., Kjellerup, B., Fennell, D., Rodenburg, L., Sower, K., Kerkhof, L., & Häggblom, M. (2011). The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Applied Microbiology and Biotechnology, 89, 2005–2017.

    Article  CAS  Google Scholar 

  78. Jeffries, T. W. (1983). Utilization of xylose by bacteria, yeasts, and fungi. Advances in Biochemical Engineering/Biotechnology, 27, 1–32.

    Article  CAS  Google Scholar 

  79. Oh, B.-R., Seo, J.-W., Heo, S.-Y., Hong, W.-K., Luo, L., Kim, S., Park, D.-H., & Kim, C. (2012). Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 166(1), 127–137.

    Article  CAS  Google Scholar 

  80. Sen, B., Dabir, A. P., Lanjekar, V. B., & Ranade, D. R. (2015). Isolation and partial characterization of a new strain of Klebsiella pneumonia capable of high 1,3-propanediol production from glycerol. Global Journal of Environment Science Management, 1(2), 99–108.

    Google Scholar 

  81. Wilkens, E., Ringel, A., Hortig, D., Willke, T., & Vorlop, W. (2012). High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Applied Microbiology and Biotechnology, 93, 1057–1063.

    Article  CAS  Google Scholar 

  82. Yen, H., Li, F., & Chang, J. (2014). 1,3-Propanediol and 2,3-butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5. Bioresource Technology, 153, 374–378.

    Article  CAS  Google Scholar 

  83. Liu, H., Zhang, D., Xu, Y. H., Mu, Y., Sun, Y., & Xiu, J. (2007). Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot plant. Biotechnological Letters, 29, 1281–1285.

    Article  CAS  Google Scholar 

  84. Anand, P., Saxena, R., Yadav, S., & Jahan, F. (2010). A greener solution for darker side of biodiesel: utilization of crude glycerol in 1,3-propanediol production. Journal of Biofuels, 1, 83–91.

    Article  Google Scholar 

  85. Mu, Y., Teng, H., Zhang, D., Wang, W., & Xiu, Z. (2006). Microbial production of 1,3-propanediol by Klebsiella pneumonia using crude glycerol from biodiesel preparations. Biotechnological Letters, 28, 1755–1759.

    Article  CAS  Google Scholar 

  86. Moon, C., Ahn, J.-H., Kim, S., Sang, B.-I., & Um, Y. (2010). Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Applied Biochemistry and Biotechnology, 161(1–8), 502–510.

    Article  CAS  Google Scholar 

  87. Chi, Z., Pyle, D., Wen, Z., Frear, C., & Chen, S. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microangal fermentation. Process Biochemistry, 42, 1537–1545.

    Article  CAS  Google Scholar 

  88. Szymanowska-Powałowska, D. (2015). The effect of high concentrations of glycerol on the growth, metabolism and adaptation capacity of Clostridium butyricum DSP1. Electronic Journal of Biotechnology, 18(2), 128–133.

  89. Menzel, K., Zeng, A. P., & Deckwer, W. D. (1997). High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme and Microbial Technology, 20(2), 82–86.

  90. Przystalowska, H., Zeyland, J., Szymanowska-Powalowska, D., Szalata, M., Slomski, R., & Lipinski, D. (2015). 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Microbiological Research, 171, 1–7.

  91. Sen, B., Dabir, A. P., Lanjekar, V. B., & Ranade, D. R. (2015). Isolation and partial characterization of a new strain of Klebsiella pneumoniae capable of high 1,3 propanediol production from glycerol. Global Journal of Environmental Science and Management, 1(2), 99–108.

  92. Vieira, P. B., Kilikian, B. V., Bastos, R. V., Perpetuo, E. A., & Nascimento, C. A. O. (2015). Process strategies for enhanced production of 1,3-propanediol by Lactobacillus reuteri using glycerol as a co-substrate. Biochemical Engineering Journal, 94, 30–38.

  93. Zhang, G., Yang, G., Wang, W., Guo, Q., Li, Y., & Li, J. (2011). Influence of blocking of 2,3-butanediol production on glycerol metabolism for 1,3-PD production by Klebsiella pneumonia. Applied Biochemistry and Biotechnology, 168(1), 116–128.

    Article  Google Scholar 

  94. Tong, I., Liao, H., & Cameron, D. (1991). 1,3-propanediol production by Escherichia coli expressing genes from Klebsiella pneumonia dha regulon. Applied and Environmental Microbiology, 57, 3541–3546.

    CAS  Google Scholar 

  95. Leja, K., Czaczyk, K., & Myszka, K. (2011). The use of microorganisms in 1,3-propanediol production. African Journal of Microbiology Research, 5(26), 4652–4658.

    CAS  Google Scholar 

  96. Zhu, M., Lawman, P., & Cameron, D. (2002). Improving 1, 3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnology Progress, 18, 694–699.

    Article  CAS  Google Scholar 

  97. Zhuge, B., Zhang, C., Fang, H., Zhuge, J., & Permaul, K. (2010). Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Applied Microbiology and Biotechnology, 87(6), 2177–2184.

    Article  CAS  Google Scholar 

  98. Gonzalez-Pajuelo, M., Meynial-Salles, I., Mendes, F., Soucaille, P., & Vasconcelos, I. (2006). Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Applied and Environmental Microbiology, 72(1), 96–101.

    Article  CAS  Google Scholar 

  99. Maervoet, V. E., De Maeseneire, S. L., Avci, F. G., Beauprez, J., Soetaert, W. K., & De Mey, M. (2016). High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Microbial Cell Factories, 15(1), 23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Chistoserdov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jz., Xu, W., Chistoserdov, A. et al. Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains. Appl Biochem Biotechnol 179, 1073–1100 (2016). https://doi.org/10.1007/s12010-016-2051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2051-6

Keywords

Navigation