Skip to main content
Log in

Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lindberg, R. H., Östman, M., Olofsson, U., Grabic, R., & Fick, J. (2014). Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system. Water Research, 58, 221–229.

    Article  CAS  Google Scholar 

  2. Santos, L. H., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., & Montenegro, M. C. B. (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. The Science of the Total Environment, 461, 302–316.

    Article  Google Scholar 

  3. Pena, A., Lino, C. M., Alonso, R., & Barceló, D. (2007). Determination of tetracycline antibiotic residues in edible swine tissues by liquid chromatography with spectrofluorometric detection and confirmation by mass spectrometry. Journal of Agricultural and Food Chemistry, 55(13), 4973–4979.

    Article  CAS  Google Scholar 

  4. Aydin, S., Cetecioglu, Z., Arikan, O., Ince, B., Ozbayram, E. G., & Ince, O. (2015). Inhibitory effects of antibiotic combinations on syntrophic bacteria, homoacetogens and methanogens. Chemosphere, 120, 515–520.

    Article  CAS  Google Scholar 

  5. Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Renewable fuels from algae: an answer to debatable land based fuels. Bioresource Technology, 102(1), 10–16.

    Article  CAS  Google Scholar 

  6. Seoane, M., Rioboo, C., Herrero, C., & Cid, Á. (2014). Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch. Marine Environmental Research, 101, 1–7.

    Article  CAS  Google Scholar 

  7. Yang, W., Tang, Z., Zhou, F., Zhang, W., & Song, L. (2013). Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum. Environmental Toxicology and Pharmacology, 35(2), 320–324.

    Article  CAS  Google Scholar 

  8. Escapa, C., Coimbra, R., Paniagua, S., García, A., & Otero, M. (2015). Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresource Technology, 185, 276–284.

    Article  CAS  Google Scholar 

  9. Lu, W., Wang, Z., Wang, X., Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology.

  10. Muñoz, R., Jacinto, M., Guieysse, B., & Mattiasson, B. (2005). Combined carbon and nitrogen removal from acetonitrile using algal–bacterial bioreactors. Applied Microbiology and Biotechnology, 67(5), 699–707.

    Article  Google Scholar 

  11. Ashok, V., Shriwastav, A., & Bose, P. (2014). Nutrient removal using algal-bacterial mixed culture. Applied Biochemistry and Biotechnology, 174(8), 2827–2838.

    Article  CAS  Google Scholar 

  12. Ho, S. H., Chen, C. Y., Yeh, K. L., Chen, W. M., Lin, C. Y., & Chang, J.-S. (2010). Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochemical Engineering Journal, 53(1), 57–62.

    Article  CAS  Google Scholar 

  13. APHA, A. WEF .(1995). Standard methods for the examination of water and wastewater 19th ed. Washington, DC, USA: American Public Health Association. Washington, DC, USA.

  14. Eland, L. E., Davenport, R., & Mota, C. R. (2012). Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Research, 46(16), 5355–5364.

    Article  CAS  Google Scholar 

  15. Janse, I., Meima, M., Kardinaal, W. E. A., & Zwart, G. (2003). High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 69(11), 6634–6643.

    Article  CAS  Google Scholar 

  16. Robinson, A. A., Belden, J. B., & Lydy, M. J. (2005). Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry, 24(2), 423–430.

    Article  CAS  Google Scholar 

  17. González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., Marco, E., & Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Research, 47(6), 2050–2064.

    Article  Google Scholar 

  18. Lai, H. T., Hou, J. H., Su, C. I., & Chen, C. L. (2009). Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicology and Environmental Safety, 72(2), 329–334.

    Article  CAS  Google Scholar 

  19. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable Sustainable Energy Review, 14(2), 557–577.

    Article  CAS  Google Scholar 

  20. Alcántara, C., Domínguez, J. M., García, D., Blanco, S., Pérez, R., García-Encina, P. A., & Muñoz, R. (2015). Evaluation of wastewater treatment in a novel anoxic–aerobic algal–bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances. Bioresource Technology, 191, 173–186.

    Article  Google Scholar 

  21. Choi, H. J. (2014). Effect of optical panel distance in a photobioreactor for nutrient removal and cultivation of microalgae. World Journal of Microbiology and Biotechnology, 30(7), 2015–2023.

    Article  CAS  Google Scholar 

  22. Mahapatra, D. M., Chanakya, H., & Ramachandra, T. (2014). Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresource Technology, 168, 142–150.

    Article  CAS  Google Scholar 

  23. Posadas, E., García-Encina, P. A., Domínguez, A., Díaz, I., Becares, E., Blanco, S., & Munoz, R. (2014). Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecological Engineering, 67, 156–164.

    Article  Google Scholar 

  24. de Godos, I., Vargas, V. A., Blanco, S., González, M. C. G., Soto, R., García-Encina, P. A., Becares, E., & Muñoz, R. (2010). A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresource Technology, 101(14), 5150–5158.

    Article  Google Scholar 

  25. Choi, H. J., Lee, J. M., & Lee, S. M. (2013). A novel optical panel photobioreactor for cultivation of microalgae. Water Science and Technology, 67(11), 2543–2548.

    Article  CAS  Google Scholar 

  26. Richmond, A. (2008). Handbook of microalgal culture: biotechnology and applied phycology. ed. John Wiley & Sons.

  27. Hessen, D. O., Færøvig, P. J., & Andersen, T. (2002). Light, nutrients, and P: C ratios in algae: grazer performance related to food quality and quantity. Ecology, 83(7), 1886–1898.

    Article  Google Scholar 

  28. de Godos, I., Blanco, S., García-Encina, P. A., Becares, E., & Muñoz, R. (2009). Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresource Technology, 100(19), 4332–4339.

    Article  Google Scholar 

  29. Su, Y., Mennerich, A., & Urban, B. (2012). Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresource Technology, 124, 157–162.

    Article  CAS  Google Scholar 

  30. Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World Journal of Microbiology and Biotechnology, 28(8), 2661–2670.

    Article  CAS  Google Scholar 

  31. Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500.

    Article  CAS  Google Scholar 

  32. Eustance, E., Badvipour, S., Wray, J.T. and Sommerfeld, M.R. (2015). Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors. The Journal of Applied Psychology 1–13.

  33. Ellwood, N. T., Di Pippo, F., & Albertano, P. (2012). Phosphatase activities of cultured phototrophic biofilms. Water Research, 46(2), 378–386.

    Article  CAS  Google Scholar 

  34. Dubey, S. K., Dubey, J., Mehra, S., Tiwari, P., & Bishwas, A. (2013). Potential use of cyanobacterial species in bioremediation of industrial effluents. African Journal of Biotechnology, 10(7), 1125–1132.

    Google Scholar 

  35. van der Grinten, E., Pikkemaat, M. G., van den Brandhof, E.-J., Stroomberg, G. J., & Kraak, M. H. (2010). Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere, 80(1), 1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ergin Taşkan.

Additional information

Highlights

• Photo-bioreactor accomplished organic and nutrient removal without antibiotic.

• Tetracycline antibiotics has inhibition at higher than 1 mg/L on algal reactor.

• The growth inhibition of algae was 94 % at antibiotic concentration of 30 mg/L.

• Eukaryotic algae was more sensitive than cyanobacteria.

• PCR-DGGE analysis is a suitable control approach of algal photo-bioreactor system.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşkan, E. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor. Appl Biochem Biotechnol 179, 947–958 (2016). https://doi.org/10.1007/s12010-016-2042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2042-7

Keywords

Navigation