Skip to main content

Advertisement

Log in

Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The changes in total phenolics, flavonoids, tannins, valerenic acid, and antioxidant activity were assessed in 25 populations of Valeriana jatamansi sampled from 1200 to 2775 m asl and four habitat types of Uttarakhand, West Himalaya. Significant (p < 0.05) variations in total phenolics, flavonoids, valerenic acid, and antioxidant activity in aerial and root portions and across the populations were observed. Antioxidant activity measured by three in vitro antioxidant assays, i.e., 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) (ABTS) radical scavenging, 2,2′-diphenyl-1-picryylhydrazyl (DPPH) free radical scavenging, and ferric-reducing antioxidant power (FRAP) assays, showed significant (p < 0.05) differences across the populations. However, no clear pattern was found in phytochemicals across the altitudinal range. Among habitat types, (pine, oak, mixed forest, and grassy land), variation in phytochemical content and antioxidant activity were observed. Equal class ranking, neighbor-joining cluster analysis, and principal component analysis (PCA) identified Talwari, Jaberkhet, Manjkhali, and Khirshu populations as promising sources with higher phytochemicals and antioxidant activity. The results recommended that the identified populations with higher value of phytochemicals and antioxidants can be utilized for mass multiplication and breeding program to meet the domestic as well as commercial demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt, B., Ribnicky, D. M., Poulev, A., Logendra, S., Cafalu, W. T., & Raskin, I. (2008). A natural history of botanical therapeutics. Metabolism, Clinical and Experimental, 57, S3–S9.

    Article  CAS  Google Scholar 

  2. KIT (2003). Cultivating a healthy enterprise. In Bulletin 350 Royal Tropical Institute, Amsterdam, The Netherlands.

  3. Jugran, A.K. (2013). Fingerprinting phytochemical and genetic variations in Valeriana jatamansi and V. himalayana in Uttarakhand. Ph. D. Thesis, in Biotechnology submitted to Kumaun University, Nainital, Uttarakhand India.

  4. Becker, H., & Chavadeoi, S. (1985). Valepotriate production of normal and colchicine-treated cell suspension cultures of Valeriana wallichii. Journal of Natural Products, 48, 17–21.

    Article  CAS  Google Scholar 

  5. Bounthanh, C., Bergmann, C., Beck, J. P., Hagg-Berrurier, M., & Anton, R. (1981). Valepotriates, a new class of cytotoxic and antitumor agents. Planta Medica, 41, 21–28.

    Article  CAS  Google Scholar 

  6. Thies, P. W. (1968). Linarin-isovalerianate, a currently unknown flavonoid from Valeriana wallichii. Planta Medica, 16, 363–371.

    Article  CAS  Google Scholar 

  7. Ron, B. H., Willis, C. V., Bone, K., & Morgan, M. (2000). Herbal products: active constituents, mode of action and quality control. Nutrition Research Reviews, 13, 47–77.

    Article  Google Scholar 

  8. Marder, M., Viola, H., Wasowski, C., Fernandez, S., Medina, J. H., & Paladini, A. C. (2003). 6-methylapigenin and hesperidins: new Valeriana flavonoids with activity on the CNS. Pharmacology and Biological Behavior, 75, 537–545.

    Article  CAS  Google Scholar 

  9. Singh, N., Gupta, A. P., Singh, B., & Kaul, V. K. (2006). Quantification of valeric acid in Valeriana jatamansi and Valeriana officinalis by HPTLC. Chromatographia, 63, 209–213.

    Article  CAS  Google Scholar 

  10. Bhatt, I. D., Dauthal, P., Rawat, S., Gaira, K. S., Jugran, A., Rawal, R. S., & Dhar, U. (2012). Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Scientia Horticulturae, 136, 61–68.

    Article  CAS  Google Scholar 

  11. Singh, R. D., Gopichand Meena, R. L., Sharma, B., Singh, B., Kaul, V. K., & Ahuja, P. S. (2010). Seasonal variation of bioactive components in Valeriana jatamansi from Himanchal Pradesh, India. Industrial Crops and Products, 32, 292–296.

    Article  CAS  Google Scholar 

  12. Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F., Poessel, J. L., Caris-Veyrat, C., & Génard, M. (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? Journal of Agriculture and Food Chemistry, 56, 1241–1250.

    Article  CAS  Google Scholar 

  13. Andola, H. C., Gaira, K. S., Rawal, R. S., Rawat, M. S. M., & Bhatt, I. D. (2010). Habitat dependent variation in berberine content of Berberis asiatica Roxb. Ex. DC. In Kumaon, western Himalaya. Chemistry and Biodiversity, 7, 415–420.

    Article  CAS  Google Scholar 

  14. Rawat, S., Bhatt, I. D., & Rawal, R. S. (2011). Total phenolic compounds and antioxidant potential of Hedychium spicatum Buch. Ham. ex D. Don in West Himalaya, India. Journal of Food Componant Analysis, 24, 574–579.

    Article  CAS  Google Scholar 

  15. Sundaresan, V., Shani, G., Verma, R. S., Padalia, R. C., Mahrotra, S., & Thul, S. T. (2012). Impact of geographic range on genetic and chemical diversity of Indian Valerian (Valeriana jatamansi) from northwestern Himalaya. Biochemical Genetics, 50, 797–808.

    Article  CAS  Google Scholar 

  16. Jugran, A. K., Bhatt, I. D., Rawal, R. S., Nandi, S. K., & Pande, V. (2013). Patterns of morphological and genetic diversity of Valeriana jatamansi Jones in different habitats and altitudinal range of West Himalaya, India. Flora Morphology, Distribution, Functional Ecology of Plants, 208, 13–21.

    Article  Google Scholar 

  17. Rawal, R. S., Pandey, B., & Dhar, U. (2003). Himalayan forest database—thinking beyond dominants. Current Science, 84, 990–994.

    Google Scholar 

  18. Andola, H. C., Rawal, R. S., & Bhatt, I. D. (2011). Comparative studies on the nutritive and anti-nutritive properties of fruits in selected Berberis species of West Himalaya, India. Food Research International, 44, 2352–2356.

    Article  CAS  Google Scholar 

  19. Jugran, A., Rawat, S., Dauthal, P., Mondal, S., Bhatt, I. D., & Rawal, R. S. (2013). Association of ISSR markers with some biochemical traits of Valeriana jatamansi Jones. Industrial Crops and Products, 44, 671–676.

    Article  CAS  Google Scholar 

  20. Upton, R. (1999). Commercial sources and handling. In R. Upton (Ed.), Valerian root, Valeriana officinalis, analytical, quality control and therapeutic monograph (pp. 6–7). Santa Cruz: American Herbal Pharmacopoeia.

    Google Scholar 

  21. Jugran, A. K., Bhatt, I. D., & Rawal, R. S. (2015). Identification of ISSR markers associated with valerenic acid and antioxidant activity in Valeriana jatamansi Jones in western Himalaya. Molecular Breeding, 35, 1–14. doi:10.1007/s11032-015-0241-5.

    Article  CAS  Google Scholar 

  22. Cruz, A. G., Cadena, R. S., Alvaro, M. B. V. B., Sant’Ana, A. S., Oliveira, C. A. F., Faria, J. A. F., et al. (2013). Assessing the use of different chemometric techniques to discriminate low-fat and full-fat yogurts. LWT-Food Science and Technology, 50, 210–214.

    Article  CAS  Google Scholar 

  23. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  24. Rawat, S., Andola, A., Giri, L., Dhyani, P., Jugran, A., Bhatt, I. D., & Rawal, R. S. (2014). Assessment of nutritional and antioxidant potential of selected vitality strengthening medicinal plants. International Journal of Food Properties, 17, 703–712.

    Article  CAS  Google Scholar 

  25. Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P. E. M., & Halim, M. R. A. (2010). Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897.

    Article  CAS  Google Scholar 

  26. Alonso-Amelot, M. E., Oliveros-Bastidas, A., & Calcagno-Pisarelli , M. (2007). Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation, and rain regime. Biochemical Systematics and Ecology, 35, 1–7.

  27. Oloumi, H., & Hassibi, N. (2011). Study the correlation between some climate parameters and the content of phenolic compounds in roots of Glycyrrhiza glabra. Journal of Medicinal Plant Research, 5, 6011–6016.

    CAS  Google Scholar 

  28. Dragovi-Uzelac, V., Savi, Z., Brala, A., Levaj, B., Kovaceveic, D. B., & Bisko, A. (2010). Evaluation of phenolic content and antioxidant capacity of blueberry cultivars (Vaccinium corymbosum L.) grown in the northwest Croatia. Food Technology and Biotechenology, 48, 214–221.

    Google Scholar 

  29. Ahmad, I., Ahmad, M. S. A., Ashraf, M., Hussain, M., & Ashraf, M. Y. (2011). Seasonal variation in some medicinal and biochemical ingredients in Mentha longifolia (L.) Huds. Pakistan Journal of Botany, 43, 69–77.

    CAS  Google Scholar 

  30. Binns, S. E., Arnason, J. T., & Baum, B. R. (2002). Phytochemical variation within populations of Echinacea angustifolia (Asteraceae). Biochemical Systematics and Ecology, 30, 837–854.

    Article  CAS  Google Scholar 

  31. Tong, L., Wang, Y., Xiong, J., Cui, Y., Zhou, Y., & Yi, L. (2008). Selection and fingerprints of the control substances for plant drug Eucommia ulmodies Oliver by HPLC and LC–MS. Talanta, 76, 80–84.

    Article  CAS  Google Scholar 

  32. Devkota, A., Dall Acqua, S., Jha, P. K., & Innocenti, G. (2010). Variation in the active constituent contents in Centella asiatica grown in different habitats in Nepal. Botnica Orientalis- Journal of Plant Science, 7, 43–47.

    Google Scholar 

  33. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2015). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-015-1909-3.

    Google Scholar 

  34. Vats, S. (2015). Effect of initial temperature treatment on phytochemicals and antioxidant activity of Azadirachta indica A. Juss. Applied Biochemistry and Biotechnology. 1–9.

  35. Surveswaran, S., Cai, Y., Corke, H., & Sun, M. (2007). Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chemistry, 102, 938–953.

    Article  CAS  Google Scholar 

  36. Das, J., Mao, A. A., & Handique, P. J. (2011). Terpenoid composition and antioxidant activities of two Indian Valerian oils from the Khasi Hills of north-east India. Journal of Natural Products and Communication, 6, 129–132.

    CAS  Google Scholar 

  37. Kalim, M. D., Bhattacharya, D., Banerjee, A., & Chattopadhyay, S. (2010). Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complementary and Alternative Medicine, 10, 77 (http://www.biomedcentral.com/1472-6882/10/77).

    Article  Google Scholar 

  38. Zidorn, C., Schubert, B., & Stuppner, H. (2005). Altitudinal difference in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochemical Systematics and Ecology, 33, 855–872.

    Article  CAS  Google Scholar 

  39. Spitaler, R., Winkler, A., Lins, I., Yanar, S., Stippner, H., & Zidorn, C. (2008). Altitudinal variation of phenolic contents in flowering heads of Arnica montana CV. ARBO: a 3 year compassion. Journal of Chemical Ecology, 34, 369–375.

    Article  CAS  Google Scholar 

  40. Rawat, S., Jugran, A., Giri, L., Bhatt, I. D., & Rawal, R. S. (2010). Assessment of antioxidant properties in fruits of Myrica esculenta: a popular wild edible species in Indian Himalayan region. Evidence based Complementary and Alternative Medicine. doi:10.1093/ecam/neq055.

    Google Scholar 

  41. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11, 4241–4257.

    Article  CAS  Google Scholar 

  42. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  43. Selvam, K., Rajinikanth, R., Govarthanan, M., Paul, A., Selvankumar, T., & Sengottaiyan, A. (2013). Antioxidant potential and secondary metabolites in Ocimum sanctum L. at various habitats. Journal of Medicinal Plant Research, 7, 706–712.

    CAS  Google Scholar 

  44. Mathela, C. S., Sati, S., & Chanotiya, C. S. (2005). Comparative investigations of the leaf and root oils of Valeriana wallichii DC. from north western Himalaya. Journal of Essential Oil Research, 17, 408–409.

    Article  Google Scholar 

  45. Mockute, D., Bernotiene, G., & Judzentiene, A. (2001). The essential oil of Origanum vulgare L. spp. vulgare growing wild in Vilnius district (Lithuania). Phytochemistry, 57, 65–69.

    Article  CAS  Google Scholar 

  46. Tian, C., Nan, P., Chen, J., & Zhong, Y. (2004). Volatile composition of Chinese Hippophae rhamnoides and its chemotaxonomic implications. Biochemical Systematics and Ecology, 32, 431–441.

    Article  CAS  Google Scholar 

  47. Curado, M. A., Carolina, B. A., Oliveira, J. G. J., Suzana, C. S., Seraphin, J. C., & Ferri, P. H. (2006). Environmental factors influence on chemical polymorphism of the essential oils of Lychnophora ericoides. Phytochemistry, 67, 2363–2369.

    Article  CAS  Google Scholar 

  48. Douglas, M. H., Van Klink, J. W., Smallfield, B. M., Perry, N. B., Anderson, R. E., John-Stone, P., & Weaver, R. T. (2004). Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry, 65, 1225–1264.

    Article  Google Scholar 

  49. Medina, H. A., Omar Holguin, F., Micheletto, S., Goehle, S., Julian, A., & O’connell, M. A. (2008). Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry, 69, 919–927.

    Article  Google Scholar 

  50. Chauhan, R. S., Kitchlu, S., Ram, G., Kaul, M. K., & Tava, A. (2010). Chemical composition of capillene chemotypes of Artemissia dracunculus L. from northwest Himalaya. Industrial Crops and Products, 31, 546–549.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. P.P. Dhyani, Director of GBPIHED, for the facilities and encouragement. Colleagues of Biodiversity Conservation and Management and Ecophysiology and biotechnological application group are thanks for the cooperation and help during the study. Financial support is from GBPIHED in house project no. 10, and Science and Engineering Research Board, Department of Science and Technology (DST No. SB/YS/LS-162/262), New Delhi, is acknowledged for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra D. Bhatt.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table A1

(DOC 43 kb)

Table A2

(DOC 38 kb)

Table A3

(DOC 66 kb)

Table A4

(DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jugran, A.K., Bahukhandi, A., Dhyani, P. et al. Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi . Appl Biochem Biotechnol 179, 911–926 (2016). https://doi.org/10.1007/s12010-016-2039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2039-2

Keywords

Navigation