Skip to main content
Log in

Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co+2 (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo+6 = W+6 > Pb+2 > Mn+2 > Cr+3 > Sn+2), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tanimura, A., Liu, W., Yamada, K., Kishida, T., & Toyohara, H. (2013). Animal cellulases with a focus on aquatic invertebrates. Fisheries Science, 79, 1–13.

    Article  CAS  Google Scholar 

  2. Béguin, P., & Aubert, J. P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13, 25–58.

    Article  Google Scholar 

  3. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  4. Wilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20, 295–299.

    Article  CAS  Google Scholar 

  5. Phitsuwan, P., Laohakunjit, N., Kerdchoechuen, O., Kyu, K. L., & Ratanakhanokchai, K. (2013). Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiologica, 58, 163–176.

    Article  CAS  Google Scholar 

  6. Acebal, C., Castillon, P., Estrada, P., Mata, I., Costa, E., Aguado, J., Romero, D., & Jimenez, F. (1986). Enhanced cellulase production from Trichoderma reesei QM 9414 on physically treated wheat straw. Applied Microbiology and Biotechnology, 24, 218–223.

    Article  CAS  Google Scholar 

  7. Matkar, K., Chapla, D., Divecha, J., Nighojkar, A., & Madamwar, D. (2013). Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. International Biodeterioration and Biodegradation, 78, 24–33.

    Article  CAS  Google Scholar 

  8. Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C. R. K., & Jha, B. (2011). Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere, 83, 706–712.

    Article  CAS  Google Scholar 

  9. Asha, B. M., & Sakthivel, N. (2014). Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkaliphilic and solvent-tolerant properties. Annals of Microbiology, 64, 1839–1848.

    Article  CAS  Google Scholar 

  10. Doukyu, N., & Ogino, H. (2010). Organic solvent tolerant enzymes. Biochemical Engineering Journal, 48, 270–282.

    Article  CAS  Google Scholar 

  11. Bisht, D., Yadav, S. K., Gautam, P., & Darmwal, N. S. (2013). Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa. Journal of Basic Microbiology, 53, 715–722.

    Article  CAS  Google Scholar 

  12. Rahman, Z., & Singh, V. P. (2014). CrVI reduction by Enterobacter sp. DU17 isolated from the tannery waste dump site and characterization of the bacterium and the CrVI reductase. International Biodeterioration and Biodegradation, 91, 97–103.

    Article  CAS  Google Scholar 

  13. Sadhu, S., Ghosh, P. K., De, T. K., & Maiti, T. K. (2013). Optimization of cultural condition and synergistic effect of lactose with carboxymethyl cellulose on cellulase production by Bacillus sp. isolated from fecal matter of elephant Elephas maximus. Advances in Microbiology, 3, 280–288.

    Article  Google Scholar 

  14. Saha, S., Roy, R. J., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica Peters and grass carp, Ctenopharyngodon idella Valenciennes. Aquaculture Research, 37, 380–388.

    Article  CAS  Google Scholar 

  15. Gao, W., Lee, E. J., Lee, S. U., Li, J., Chung, C. H., & Lee, J. W. (2012). Enhanced carboxymethylcellulase production by a newly isolated marine bacterium Cellulophaga lytica LBH-14, using wheat bran. Journal of Microbiology and Biotechnology, 22, 1412–1422.

    Article  CAS  Google Scholar 

  16. Lo, Y. C., Saratale, G. D., Chen, W. M., Bai, M. D., & Chang, J. S. (2009). Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for biohydrogen production. Enzyme and Microbial Technology, 44, 417–425.

    Article  CAS  Google Scholar 

  17. Balasubramanian, N., Toubarro, D., Teixeira, M., & Simõs, N. (2012). Purification and biochemical characterization of a novel thermo-stable carboxymethyl cellulase from Azorean isolate Bacillus mycoides S122C. Applied Biochemistry and Biotechnology, 168, 2191–2204.

    Article  CAS  Google Scholar 

  18. Amore, A., Pepe, O., Ventorino, V., Birolo, L., Giangrande, C., & Faraco, V. (2013). Industrial waste based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiology Letters, 339, 93–101.

    Article  CAS  Google Scholar 

  19. Teather, R. M., & Wood, P. J. (1982). Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43, 777–780.

    CAS  Google Scholar 

  20. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., & Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America, 82, 6955–6959.

    Article  CAS  Google Scholar 

  21. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721.

    Article  CAS  Google Scholar 

  22. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6 molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  23. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33, 305–325.

    Article  Google Scholar 

  24. Weuster-Botz, D. (2000). Experimental design for fermentation media development statistical design or global random search? Journal of Bioscience and Bioengineering, 90, 473–483.

    Article  CAS  Google Scholar 

  25. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  26. Wood, T. M., & Bhat, K. M. (1998). Method for measuring cellulase activities. In W. A. Wood & J. A. Kellogg (Eds.), Methods in enzymology (pp. 87–112). New York: Academic.

    Google Scholar 

  27. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  28. Chevallet, M., Luche, S., & Rabilloud, T. (2006). Silver staining of proteins in polyacrylamide gels. Nature Protocols, 1, 1852–1858.

    Article  CAS  Google Scholar 

  29. McCarthy, A. J. (1987). Lignocellulose-degrading actinomycetes. FEMS Microbiology Reviews, 46, 145–163.

    Article  CAS  Google Scholar 

  30. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  31. Anderson, I., Abt, B., Lykidis, A., Klenk, H. P., Kyrpides, N., & Ivanova, N. (2012). Genomics of aerobic cellulose utilization systems in actinobacteria. PloS One, 7, e39331.

    Article  CAS  Google Scholar 

  32. Kang, S. M., Khan, A. L., Hamayun, M., Hussain, J., Joo, G. J., You, Y. H., Kim, J. G., & Lee, I. J. (2012). Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. The Journal of Microbiology, 50, 902–909.

    Article  CAS  Google Scholar 

  33. Kumar, M., Joshi, A., Kashyapa, R., & Khannab, S. (2011). Production of xylanase by Promicromonospora sp. MARS with rice straw under non sterile conditions. Process Biochemistry, 46, 1614–1618.

    Article  CAS  Google Scholar 

  34. Qin, S., Jiang, J. H., Klenk, H. P., Zhu, W. Y., Zhao, G. Z., Zhao, L. X., Tang, S. K., Xu, L. H., & Li, W. J. (2012). Promicromonospora xylanilytica sp. nov., an endophytic actinomycete isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis. International Journal of Systematic and Evolutionary Microbiology, 62, 84–89.

    Article  CAS  Google Scholar 

  35. Ventorino, V., Aliberti, A., Faraco, V., Robertiello, A., Giacobbe, S., Ercolini, D., Amore, A., Fagnano, M., & Pepe, O. (2015). Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Scientific Reports, 5, 8161.

    Article  CAS  Google Scholar 

  36. Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102, 6065–6072.

    Article  CAS  Google Scholar 

  37. Yoko, I. (1986). Effect of glycine and its derivatives on production and release of β-galactosidase by Escherichia coli. Agricultural and Biological Chemistry, 50, 2747–2753.

    Google Scholar 

  38. Dhawan, S., & Kuhad, R. C. (2002). Effect of amino acids and vitamins on laccase production from bird’s nest fungus Cyathus bulleri. Bioresource Technology, 84, 35–38.

    Article  CAS  Google Scholar 

  39. Spiridonov, N. A., & Wilson, D. B. (1998). Regulation of biosynthesis of individual cellulases in Thermomonospora fusca. Journal of Bacteriology, 180, 3529–3532.

    CAS  Google Scholar 

  40. Rajoka, M. I. (2004). Influence of various fermentation variables on exoglucanase production in Cellulomonas flavigena. Electronic Journal of Biotechnology, 7, 259–266.

    Article  Google Scholar 

  41. Asha, B. M., Revathi, M., Yadav, A., & Sakthivel, N. (2012). Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. Journal of Microbiology and Biotechnology, 22, 1501–1509.

    Article  CAS  Google Scholar 

  42. Saxena, S., Bahadur, J., & Varma, A. (1992). Effect of cobalt and nickel on growth and carboxymethyl cellulase activity of Cellulomonas spp. BioMetals, 5, 209–212.

    Article  CAS  Google Scholar 

  43. Ferchak, J. D., & Pye, E. K. (1983). Effect of cellobiose, glucose, ethanol, and metal ions on the cellulase enzyme complex of Thermomonospora fusca. Biotechnology and Bioengineering, 25, 2865–2872.

    Article  CAS  Google Scholar 

  44. Zaks, A., & Klibanov, A. M. (1988). Enzymatic catalysis in nonaqueous solvents. The Journal of Biological Chemistry, 263, 3194–3201.

    CAS  Google Scholar 

  45. Li, X., Wang, H. L., Li, T., & Yu, H. Y. (2012). Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnology Letters, 34, 1531–1536.

    Article  CAS  Google Scholar 

  46. Ogino, H., & Ishikawa, H. (2001). Enzymes which are stable in the presence of organic solvents. Journal of Bioscience and Bioengineering, 91, 109–116.

    Article  CAS  Google Scholar 

  47. Li, X., & Yu, H. Y. (2012). Purification and characterization of an organic solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. The Journal of Industrial Microbiology and Biotechnology, 39, 1117–1124.

    Article  CAS  Google Scholar 

  48. Li, X., & Yu, H. Y. (2013). Halostable cellulase with organic solvent tolerance from Haloarcula sp. LLSG7 and its application in bioethanol fermentation using agricultural wastes. The Journal of Industrial Microbiology and Biotechnology, 40, 1357–1365.

    Article  CAS  Google Scholar 

  49. Saratale, G. D., Kshirsagar, S. D., Sampange, V. T., Saratale, R. G., Oh, S. E., Govindwar, S. P., & Oh, M. K. (2014). Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Applied Biochemistry and Biotechnology, 174, 2801–2817.

    Article  CAS  Google Scholar 

  50. Chellapandi, P., & Jani, H. M. (2008). Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. The Brazilian Journal of Microbiology, 39, 122–127.

    Article  CAS  Google Scholar 

  51. Saratale, G. D., Saratale, R. G., & Oh, S. E. (2012). Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass and Bioenergy, 47, 302–315.

    Article  CAS  Google Scholar 

  52. de Menezes, A. B., Lockhart, R. J., Cox, M. J., Allison, H. E., & McCarthy, A. J. (2008). Cellulose degradation by micromonosporas recovered from freshwater lakes and classification of these actinomycetes by DNA Gyrase B gene sequencing. Applied and Environmental Microbiology, 74, 7080–7084.

    Article  Google Scholar 

  53. Waldron, C. R., Jr., Becker-Vallone, C. A., & Eveleigh, D. E. (1986). Isolation and characterization of a cellulolytic actinomycete Microbispora bispora. Applied Microbiology and Biotechnology, 24, 477–486.

    CAS  Google Scholar 

  54. Saratale, G. D., & Oh, S. E. (2011). Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU. Biodegradation, 22, 905–919.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Fellowships from C.S.I.R. (New Delhi) to Lebin Thomas, from U.G.C. (New Delhi) to Hari Ram and Alok Kumar, and R&D grant from the University of Delhi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ved Pal Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOC 488 kb)

Supplementary Fig. 2

(DOC 197 kb)

Supplementary Fig. 3

(DOC 251 kb)

Supplementary Fig. 4

(DOC 1858 kb)

Supplementary Fig. 5

(DOC 232 kb)

Supplementary Fig. 6

(DOC 539 kb)

Supplementary Table 1

(DOC 35 kb)

Supplementary Table 2

(DOC 34 kb)

Supplementary Table 3

(DOC 35 kb)

Supplementary Table 4

(DOC 36 kb)

Supplementary Table 5

(DOC 36 kb)

Supplementary Table 6

(DOC 37 kb)

Supplementary Table 7

(DOC 38 kb)

Supplementary Table 8

(DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, L., Ram, H., Kumar, A. et al. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111. Appl Biochem Biotechnol 179, 863–879 (2016). https://doi.org/10.1007/s12010-016-2036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2036-5

Keywords

Navigation