Skip to main content
Log in

Metabolite and Mechanistic Basis of Antifungal Property Exhibited by Endophytic Bacillus amyloliquefaciens BmB 1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plants are ubiquitously colonized by endophytic microorganisms which contribute significantly to plant health through production of plant growth regulators or disease suppression. In the present study, an endophytic bacterial isolate designated as BmB 1 with significant antifungal and plant growth promoting properties was isolated from the stem tissue of Bacopa monnieri (L.) Pennell. The isolate was studied in detail for the molecular and chemical basis of its bioactivity which proved it to have the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes. For the analysis of the chemical basis of antifungal property, extract of the isolate was initially checked for its activity on test pathogens and LC-MS/MS based analysis further confirmed the presence of bacillomycin (m/z (M+H+) 1031.8) and surfactin (m/z (M+H+) 1008.6 and 1022.6) in the extract prepared. The light microscopic and SEM analysis of the treated and untreated mycelia of the pathogens clearly revealed the hypal destruction caused by the compounds produced by the selected isolate. This confirms the ability of the organism to directly inhibit the growth of the tested pathogens. The GC-MS analysis also confirmed the isolate to have the presence of volatile compounds with the expected role to induce induced systemic resistance (ISR) of the plant. Because of the multitargeted antifungal property, the isolate which was identified as Bacillus amyloliquefaciens can have potential biocontrol applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jasim, B., John Jimtha, C., Jyothis, M., & Radhakrishnan, E. K. (2013). Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regulation, 71(1), 1–11. doi:10.1007/s10725-013-9802-y.

    Article  CAS  Google Scholar 

  2. Ferreira, J. H. S., Matthee, F. N., & Thomas, A. C. (1991). Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Ecology and Epidermiology, 81(3), 283–287.

    Google Scholar 

  3. Islam, M. R., Jeong, Y. T., Lee, Y. S., & Song, C. H. (2012). Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology, 40(1), 59–66. doi:10.5941/MYCO.2012.40.1.059.

    Article  CAS  Google Scholar 

  4. Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in Microbiology, 6, 780. doi:10.3389/fmicb.2015.00780.

    Article  Google Scholar 

  5. Aravind, R., Kumar, A., Eapen, S. J., & Ramana, K. V. (2009). Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Letters in Applied Microbiology, 48(1), 58–64. doi:10.1111/j.1472-765X.2008.02486.x.

    Article  CAS  Google Scholar 

  6. Shomura, T., Omoto, S., Ohba, K., Ogino, H., Kojima, M., & Inouye, S. (1980). SF-1961, a new antibiotic related to bleomycin. The Journal of Antibiotics, 33(11), 1243–1248. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6166601.

    Article  CAS  Google Scholar 

  7. Jasim, B., Jimtha John, C., Shimil, V., Jyothis, M., & Radhakrishnan, E. K. (2014). Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. Journal of Applied Microbiology, 117(3), 786–799. doi:10.1111/jam.12569.

    Article  CAS  Google Scholar 

  8. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1–2), 203–214. doi:10.1089/10665270050081478.

    Article  CAS  Google Scholar 

  9. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. doi:10.1093/molbev/msr121.

    Article  CAS  Google Scholar 

  10. Rahman, A., Sitepu, I. R., Tang, S.-Y., & Hashidoko, Y. (2010). Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Bioscience, Biotechnology, and Biochemistry, 74(11), 2202–2208. doi:10.1271/bbb.100360.

    Article  CAS  Google Scholar 

  11. Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173–181. doi:10.1016/j.micres.2006.04.001.

    Article  CAS  Google Scholar 

  12. Jimtha, J., Smitha, P. V., Anisha, C., Deepthi, T., Meekha, G., Radhakrishnan, E. K., … Remakanthan, A. (2014). Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant Cell, Tissue and Organ Culture (PCTOC), 118(1), 57–66. doi:10.1007/s11240-014-0461-0.

  13. Surange, S., Wollum, A. G., II, Kumar, N., & Nautiyal, C. S. (1997). Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Canadian Journal of Microbiology, 43(9), 891–894. doi:10.1139/m97-130.

    Article  CAS  Google Scholar 

  14. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. doi:10.1016/0003-2697(87)90612-9.

    Article  CAS  Google Scholar 

  15. Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386–395. doi:10.1111/j.1365-2672.2009.04438.x.

    Article  CAS  Google Scholar 

  16. Erlacher, A., Cardinale, M., Grosch, R., Grube, M., & Berg, G. (2014). The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Frontiers in Microbiology, 5, 175. doi:10.3389/fmicb.2014.00175.

    Article  Google Scholar 

  17. Chowdhury, S. P., Dietel, K., Rändler, M., Schmid, M., Junge, H., Borriss, R., … Grosch, R. (2013). Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PloS One, 8(7), e68818. doi:10.1371/journal.pone.0068818.

  18. Tsuge, K., Inoue, S., Ano, T., Itaya, M., & Shoda, M. (2005). Horizontal transfer of iturin A operon, itu, to bacillus subtilis 168 and conversion into an iturin A producer. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 49(11), 4641–4648. doi:10.1128/AAC.49.11.4641.

    Article  CAS  Google Scholar 

  19. Tang, J.-S., Zhao, F., Gao, H., Dai, Y., Yao, Z.-H., Hong, K., … Yao, X.-S. (2010). Characterization and online detection of surfactin isomers based on HPLC-MS(n) analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS-induced macrophages. Marine Drugs, 8(10), 2605–2618. doi:10.3390/md8102605.

  20. Straus, S. K., & Hancock, R. E. W. (2006). Mode of action of the new antibiotic for gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(9), 1215–1223. doi:10.1016/j.bbamem.2006.02.009.

    Article  CAS  Google Scholar 

  21. Huang, X., Zhang, N., Yong, X., Yang, X., & Shen, Q. (2012). Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological Research, 167(3), 135–143. doi:10.1016/j.micres.2011.06.002.

    Article  CAS  Google Scholar 

  22. El-mohamedy, R. S. R. (2012). Biological control of pythium root rot of broccoli plants under. Journal of Agricultural Technology, 8(3), 1017–1028.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Department of Biotechnology (DBT), Government of India under DBT-RGYI and DBT-MSUB support scheme (BT/PR4800/INF/22/152/2012 Dtd 23.03.2012) and Kerala State Council Science Technology and Environment (KSCSTE) under KSCSTE-SARD Programme. The authors also acknowledge Prof. C. T. Aravindakumar, Hon. Director and Mr. Dineep D., Scientific Assistant of the Inter-University Instrumentation Centre, Mahatma Gandhi University, Kottayam for the help and support for the LC-MS/MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan.

Ethics declarations

Compliance with Ethical Standards

We have not used any animal models for the experiments and thus do not require ethical committee clearance.

Conflict of Interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 17 kb)

Fig. S1

(DOC 71 kb)

Fig. S2

(DOC 274 kb)

Fig. S3

(DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, B., Benny, R., Sabu, R. et al. Metabolite and Mechanistic Basis of Antifungal Property Exhibited by Endophytic Bacillus amyloliquefaciens BmB 1. Appl Biochem Biotechnol 179, 830–845 (2016). https://doi.org/10.1007/s12010-016-2034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2034-7

Keywords

Navigation