Skip to main content
Log in

Effects of Impurities in Alkali-Extracted Xylan on Its Enzymatic Hydrolysis to Produce Xylo-Oligosaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As the second abundant natural carbohydrate, xylan is normally prepared through alkaline extraction and then used for xylo-oligosaccharides (XOS) production. However, the extracted xylan inevitably contains salt, ethanol, and pigment. In order to investigate the effects of these impurities on XOS production, the alkaline-extracted xylan with different kinds and concentrations of impurities was made and then hydrolyzed using alkaline xylanase (EC 3.2.1.8) to produce XOS. The results showed that a certain concentration of salt (NaCl) promoted the XOS production, while ethanol and pigment inhibited the enzymatic hydrolysis process significantly. The color value mainly ascribed to the phenolic compounds binding to xylan was a key restriction factor in the enzymatic hydrolysis later stage. Using optimal xylan sample (with 10 mg/mL NaCl, color value of 4.6 × 105, without ethanol) as substrate, the highest XOS yield of 58.58 % was obtained. As the substrate of XOS production, prepared xylan should contain colored materials and ethanol as less as possible, however, retains appropriate salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  2. Bankova, E., & Bakalova, N. (2014). Enzymatic synthesis of oligosaccharides and alkylglycosides in water-organic media via transglycosylation of lactose. Biotechnology and Biotechnological Equipment, 20, 114–119.

    Article  Google Scholar 

  3. Barendse, R. C. M., Harz, H.-P., & Betz, R. J. (1998). Enzyme preparations stabilized with inorganic salts. US: Gist-Brocades, B.V.

    Google Scholar 

  4. de Moura, F. A., Macagnan, F. T., & da Silva, L. P. (2015). Oligosaccharide production by hydrolysis of polysaccharides: a review. International Journal of Food Science and Technology, 50, 275–281.

    Article  Google Scholar 

  5. Deshpande, M. V. (1992). Ethanol production from cellulose by coupled saccharification/fermentation using Saccharomyces cerevisiae and cellulase complex from Sclerotiun rolfsii UV-8 mutant. Applied Biochemistry and Biotechnology, 36, 227–234.

    Article  CAS  Google Scholar 

  6. Dongen, F. E. M. V., Eylen, D. V., & Kabel, M. A. (2011). Characterization of substituents in xylans from corn cobs and stover. Carbohydrate Polymers, 86, 722–731.

    Article  Google Scholar 

  7. Doukyu, N., & Ogino, H. (2010). Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 48, 270–282.

    Article  CAS  Google Scholar 

  8. Hong, F., & Yu, S. (2005). Production of xylo-oligosaccharides from corncob xylan by selective hydrolysis with Trichoerma Reesei xylanase. Chemistry and Industry of Forest Products, 2005, 77–81.

    Google Scholar 

  9. Hu, F., & Ragauskas, A. (2012). Pretreatment and lignocellulosic chemistry. Bioenergy Research, 5, 1043–1066.

    Article  CAS  Google Scholar 

  10. Jayapal, N., Samanta, A., Kolte, A. P., Senani, S., Sridhar, M., Suresh, K., & Sampath, K. (2013). Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Industrial Crop Production, 42, 14–24.

    Article  CAS  Google Scholar 

  11. Katapodis, P., Nerinckx, W., Claeyssens, M., & Christakopoulos, P. (2006). Purification and characterization of a thermostable intracellular β-xylosidase from the thermophilic fungus Sporotrichum thermophile. Process Biochemistry, 41, 2402–2409.

    Article  CAS  Google Scholar 

  12. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  13. Li, H. Q., & Jian, X. (2013). A new correction method for determination on carbohydrates in lignocellulosic biomass. Bioresource Technology, 138, 373–376.

    Article  CAS  Google Scholar 

  14. Lin, Y.-S., Tseng, M.-J., & Lee, W.-C. (2011). Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochemistry, 46, 2117–2121.

    Article  CAS  Google Scholar 

  15. Maalej-Achouri, I., Guerfali, M., Gargouri, A., & Belghith, H. (2009). Production of xylo-oligosaccharides from agro-industrial residues using immobilized Talaromyces thermophilus xylanase. Journal of Molecular Catalysis B: Enzymatic, 59, 145–152.

    Article  CAS  Google Scholar 

  16. Maillard, L. (1912). Action of amino acids on sugars. Formation of melanoidins in a methodical way. Comptes Rendus. Académie des Sciences, 154, 66–68.

    CAS  Google Scholar 

  17. Panbangred, W., Shinmyo, A., Kinoshita, S., & Okada, H. (1983). Purification and properties of endoxylanase produced by Bacillus pumilus. Agricultural and Biological Chemistry, 47, 957–963.

    CAS  Google Scholar 

  18. Panthapulakkal, S., Kirk, D., & Sain, M. (2015) Alkaline extraction of xylan from wood using microwave and conventional heating. Journal of Applied Polymer Science, 132. doi:10.1002/APP.41330.

  19. Purich, D. L. (2010). Enzyme kinetics: catalysis and control: a reference of theory and best-practice methods (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  20. Saake, B., Kathofer, D., Kruse, T., & Puls, J. (2001). Determination of factors controlling xylan solubility and association. ACS, 221, U189.

    Google Scholar 

  21. Samanta, A., Jayapal, N., Kolte, A., Senani, S., Sridhar, M., Dhali, A., Suresh, K., Jayaram, C., & Prasad, C. (2014). Process for enzymatic production of xylooligosaccharides from the xylan of corn cobs. Journal of Food Processing & Preservation, 39, 729–736.

    Article  Google Scholar 

  22. Samanta, A. K., Jayapal, N., Kolte, A. P., Senani, S., Sridhar, M., Dhali, A., Suresh, K. P., Jayaram, C., & Prasad, C. S. (2015). Process for enzymatic production of xylooligosaccharides from the xylan of corn cobs. Journal of Food Processing & Preservation, 39, 729–736.

    Article  CAS  Google Scholar 

  23. Samanta, A., Jayapal, N., Kolte, A., Senani, S., Sridhar, M., Suresh, K., & Sampath, K. (2012). Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresource Technology, 112, 199–205.

    Article  CAS  Google Scholar 

  24. Shen, C.-Q. (1994). Sugar taste and flavor chemistry (1st ed.). Guangzhou: South Chian University of Technology Press.

    Google Scholar 

  25. Sjaak, V. L., & Koppejan, J. (2008). Handbook of biomass combustion and co-firing. Washington, DC: Earthsacn.

    Google Scholar 

  26. Vagi, E., Simándi, B., Daood, H., Deak, A., & Sawinsky, J. (2002). Recovery of pigments from Origanum majorana L. by extraction with supercritical carbon dioxide. Journal of Agricultural and Food Chemistry, 50, 2297–2301.

    Article  CAS  Google Scholar 

  27. Vazquez, M., Alonso, J., Domınguez, H., & Parajo, J. (2000). Xylooligosaccharides: manufacture and applications. Trends in Food Science & Technology, 11, 387–393.

    Article  CAS  Google Scholar 

  28. Vegas, R., Alonso, J. L., Domínguez, H., & Parajó, J. C. (2005). Manufacture and refining of oligosaccharides from industrial solid wastes. Industrial and Engineering Chemistry Research, 44, 614–620.

    Article  CAS  Google Scholar 

  29. Winterhalter, C., & Liebl, W. (1995). Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Applied and Environmental Microbiology, 61, 1810–1815.

    CAS  Google Scholar 

  30. Xiao, X., Bian, J., Peng, X.-P., Xu, H., Xiao, B., & Sun, R.-C. (2013). Autohydrolysis of bamboo (Dendrocalamus giganteus Munro) culm for the production of xylo-oligosaccharides. Bioresource Technology, 138, 63–70.

    Article  CAS  Google Scholar 

  31. Xu, Y., & Chen, M. (2002). Study on enzymatic hydrolysis of xylan into xylo-oligosaccharide. Forest, Chemistry and Industry, 22, 57–60.

    Google Scholar 

  32. Yang, R., & Xu, S. (2001). The enzymatic hydrolysis of alkaline extraction xylan. Food Industry Technology, 22, 15–18.

    Google Scholar 

  33. Yao, D., Ping, M. A., Wang, Y., Yang, J., & ZHANG, L.-Y. (2011). Optimization of extraction process for xylan from corncob by response surface methodology. Food Science, 32, 111–115.

    Google Scholar 

  34. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda, K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience Biotechnology and Biochemistry, 72, 805–810.

    Article  CAS  Google Scholar 

  35. Zhao, H. (2005). Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 37, 16–25.

    Article  CAS  Google Scholar 

  36. Zhou, C., Wu, X., & He, B. (2010). Development of glycosidase biocatalysis in non-aqueous phase. Chemical, Industrial and Engineering Program, 29, 1292–1299.

    CAS  Google Scholar 

  37. Zhu, Z.-Y., Zhao, L., Ge, X.-R., Tang, Y.-L., Chen, L.-J., Pang, W., & Zhang, Y. (2015). Preparation, characterization and bioactivity of xylobiose and xylotriose from corncob xylan by xylanase. European Food Research and Technology, 241, 27–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following foundations: National Natural Science Foundation of China (No. 21276259) and NSFC international (regional) cooperation and exchange project: the International Fund for Young Scientists (No. 21450110062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Rui Shen and Hong-Qiang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, R., Li, HQ., Zhang, J. et al. Effects of Impurities in Alkali-Extracted Xylan on Its Enzymatic Hydrolysis to Produce Xylo-Oligosaccharides. Appl Biochem Biotechnol 179, 740–752 (2016). https://doi.org/10.1007/s12010-016-2028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2028-5

Keywords

Navigation