Skip to main content
Log in

Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biodiesel production catalyzed by immobilized lipases offers the possibility of easy reuse of the catalyst, which is very important to minimize costs and to make this process economically feasible. In this study, the reuse of three commercial immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM) was investigated in ethanolysis of soybean oil. The effect of the use of solvents (ethanol, butanol, and hexane) to wash the immobilized lipases before the enzyme reuse was evaluated, as well as the lipase reuse without solvent washing. The washing with butanol and ethanol led to the lowest decrease in ester yield after the first batch and allowed the highest glycerol removal (>85 %) from biocatalysts. The biocatalysts were incubated at 50 °C for 2 h in these three solvents. Esterification activities of the enzyme preparations, scanning electron microscopy (SEM) analyses of the beads, and protein content in organic phase were evaluated before and after incubation in the solvent. SEM analysis showed a significant change in beads morphology of Novozym 435 after contact with hexane. For Lipozyme TL IM lipase, this effect was visualized with ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robles-Medina, A., González-Moreno, P. A., Esteban-Cerdán, L., & Molina-Grima, E. (2009). Biocatalysis: towards ever greener biodiesel production. Biotechnology Advances, 27, 398–408.

    Article  CAS  Google Scholar 

  2. Ranganathan, S. V., Narasimhan, S. L., & Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresource Techonology, 99, 3975–3981.

    Article  CAS  Google Scholar 

  3. Gog, A., Roman, M., Tosa, M., Paizs, C., & Irimie, F. D. (2012). Biodiesel production using enzymatic transesterification—current state and perspectives. Renewable Energy, 39, 10–16.

    Article  CAS  Google Scholar 

  4. Hernández-Martín, E., & Otero, C. (2008). Different enzyme requirements for the synthesis of biodiesel: Novozym-35 and Lipozyme-TL IM. Bioresource Technology, 99, 277–286.

    Article  Google Scholar 

  5. Al-Zuhair, S. (2007). Production of biodiesel: possibilities and challenges. Biofuels, Bioproducts & Biorefining, 1, 57–66.

    Article  CAS  Google Scholar 

  6. José, C., Bonetto, R. D., Gambaro, L. A., Torres, M. P. G., Foresti, M. L., Ferreira, M. L., & Briand, L. E. (2011). Investigation of the causes of deactivation–degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol–aqueous media. Journal of Molecular Catalysis B: Enzymatic, 71, 95–107.

    Article  Google Scholar 

  7. Koskinen, A. M. P., & Klibanov, A. M. (1996). Enzymatic reactions in organic media (1st ed.). New York: Blackie Academic and Professional.

    Book  Google Scholar 

  8. Lai, C., Zullaikah, S., Vali, S. R., & Ju, Y. (2005). Lipase-catalyzed production of biodiesel from rice bran oil. Journal of Chemical Technology & Biotechnology, 80, 331–337.

    Article  CAS  Google Scholar 

  9. Rodrigues, R. C., Volpato, G., Wada, K., & Ayub, M. A. Z. (2008). Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols. Journal of American Oil Chemistry Society, 85, 925–930.

    Article  CAS  Google Scholar 

  10. Martins, A. B., Graebin, N. G., Lorenzoni, A. S. G., Fernandez-Lafuente, R., Ayub, M. A. Z., & Rodrigues, R. C. (2011). Rapid and high yields of synthesis of butyl acetate catalyzed by Novozym 435: reaction optimization by response surface methodology. Process Biochemistry, 46, 2311–2316.

    Article  CAS  Google Scholar 

  11. Langone, M. A. P., & Sant’Anna, G. L., Jr. (2002). Process development for production of medium chain triglycerides using immobilized lipase in a solvent-free system. Applied Biochemistry and Biotechnology, 98–100, 997–1008.

    Article  Google Scholar 

  12. Shah, S., & Gupta, M. N. (2007). Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry, 42, 409–414.

    Article  CAS  Google Scholar 

  13. Soumanou, M. M., & Bornscheuer, U. T. (2003). Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology, 33, 97–103.

    Article  CAS  Google Scholar 

  14. Azócar, L., Ciudad, G., Heipieper, H. J., Muñoz, R., & Navia, R. (2011). Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value. Journal of Bioscience and Bioengineering, 112, 583–589.

    Article  Google Scholar 

  15. Lee, D. H., Kim, J. M., Shin, H. Y., Kang, S. W., & Kim, S. W. (2006). Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnology and Bioprocess Engineering, 11, 522–525.

    Article  CAS  Google Scholar 

  16. Ho, L. J., Lee, D. H., Lim, J. S., Um, B.-H., Park, C., Kang, S. W., & Kim, S. W. (2008). Optimization of the process for biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Journal of Microbiology and Biotechnology, 18, 1927–1931.

    Google Scholar 

  17. Aguieiras, E. C. G., Cavalcanti-Oliveira, E. D., de Castro, A. M., Langone, M. A. P., & Freire, D. M. G. (2014). Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel, 135, 315–321.

    Article  CAS  Google Scholar 

  18. Chen, J., & Wu, W. (2003). Regeneration of immobilized Candida antarctica lipase for transesterification. Journal of Bioscience and Bioengineering, 95, 466–469.

    Article  CAS  Google Scholar 

  19. Ye, P., Xu, Z.-K., Che, A.-F., Wu, J., & Seta, P. (2005). Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials, 26, 6394–6403.

    Article  CAS  Google Scholar 

  20. Yi, S.-S., Noh, J.-M., & Lee, Y.-S. (2009). Amino acid modified chitosan beads: improved polymer supports for immobilization of lipase from Candida rugosa. Journal of Molecular Catalysis B: Enzymatic, 57, 123–129.

    Article  CAS  Google Scholar 

  21. Zhang, L., Sun, S., Xin, Z., Sheng, B., & Liu, Q. (2010). Synthesis and component confirmation of biodiesel from palm oil and dimethyl carbonate catalyzed by immobilized-lipase in solvent-free system. Fuel, 89, 3960–3965.

    Article  CAS  Google Scholar 

  22. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Boletim mensal de biodiesel. Available from: www.anp.gov.br. Accessed 11 Jan 2006.

  23. AOCS. (1996). Official methods and recommended practices of the American Oil Chemists’ Society. Determination of cis and trans-fatty acids in hydrogenated and refined oils and fats by capillary GLC. In D. Firestone (Ed.), AOCS official method Ce 1f-96 (2002). Champaign: American Oil Chemists’ Society Press.

    Google Scholar 

  24. Souza, M. S., Aguieiras, E. C. G., Silva, M. A. P., & Langone, M. A. P. (2009). Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. Applied Biochemistry and Biotechnology, 154, 253–267.

    Article  CAS  Google Scholar 

  25. Soloni, F. G. (1971). Simplified manual micromethod for determination of serum triglycerides. Clinical Chemistry, 17, 529–534.

    CAS  Google Scholar 

  26. Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. The Journal of Biological Chemistry, 177, 751–766.

    CAS  Google Scholar 

  27. Shimada, Y., Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H., & Tominaga, Y. (1999). Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of American Oil Chemistry Society, 76, 789–793.

    Article  CAS  Google Scholar 

  28. Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., & Tominaga, Y. (2000). Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of American Oil Chemistry Society, 77, 355–360.

    Article  CAS  Google Scholar 

  29. Bernardes, O. L., Bevilaqua, J. V., Leal, M. C. M. R., Freire, D. M. G., & Langone, M. A. P. (2007). Biodiesel fuel production by the transesterification reaction of soybean oil using immobilized lipase. Applied Biochemistry and Biotechnology, 136–140, 105–114.

    Google Scholar 

  30. Rodrigues, R. C., & Ayub, M. A. Z. (2011). Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochemistry, 46, 682–688.

    Article  CAS  Google Scholar 

  31. Rodrigues, R. C., & Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. Journal of Molecular Catalysis B: Enzymatic, 66, 15–32.

    Article  CAS  Google Scholar 

  32. Ganesan, A., Moore, B. D., Kelly, S. M., Price, N. C., Rolinski, O. J., Birch, D. J. S., Dunkin, I. R., & Halling, P. J. (2009). Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. ChemPhysChem Special Issue Biophysics, 10, 1492–1499.

    CAS  Google Scholar 

  33. Zhao, H., & Song, Z. (2010). Migration of reactive trace compounds from Novozym® 435 into organic solvents and ionic liquids. Biochemical Engineering Journal, 49, 113–118.

    Article  CAS  Google Scholar 

  34. Wang, W., Li, T., Ning, Z., Wang, Y., Yang, B., & Yang, X. (2011). Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme and Microbial Technology, 49, 192–196.

    Article  CAS  Google Scholar 

  35. Fernandez-Lafuente, R. (2010). Lipase from thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 62, 197–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research received financial support from FAPERJ and CNPq. The authors are also grateful to Fabiana M. T. MENDES from National Institute of Technology (Instituto Nacional de Tecnologia, INT) for kindly providing the SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erika C. G. Aguieiras or Marta A. P. Langone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguieiras, E.C.G., Ribeiro, D.S., Couteiro, P.P. et al. Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity. Appl Biochem Biotechnol 179, 485–496 (2016). https://doi.org/10.1007/s12010-016-2008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2008-9

Keywords

Navigation