Skip to main content
Log in

Polyacrylamide Gel-Entrapped Maltase: An Excellent Design of Using Maltase in Continuous Industrial Processes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial maltase catalyzes the hydrolysis of maltose and is known as one of the most significant hydrolases. It has several applications in different industrial processes but widely used in food fermentation technology and alcohol production. In the current study, entrapment technique was comprehensively examined using polyacrylamide gel as a matrix support to improve the stability and catalytic efficiency of maltase for continuous use. Maximum entrapment yield of maltase was achieved at 10 % polyacrylamide concentration with 3.0-mm bead size. Optimized conditions indicated an increase in the reaction temperature from 45 to 55 °C after maltase entrapment while no change was observed in the reaction time and pH. An increase in the K m value of entrapped maltase was attained whereas V max value decreased from 8411.0 to 6813.0 U ml−1 min−1 with reference to its free counterpart. Entrapped maltase showed remarkable thermal stability and retained 16 % activity at 70 °C even after 120.0 min. Entrapped maltase also exhibited excellent recycling efficiency up to eight consecutive reaction cycles. With respect to economic feasibility, entrapped maltase indicates its high potential to be used in various biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohamed, R. A., Salleh, A. B., Rahman, R. N. Z. R. A., Basri, M., & Leow, T. C. (2012). Isolation of the encoding gene for a thermostable α-glucosidase from Geobacillus stearothermophilus strain RM and its expression in Escherichia coli. African Journal of Microbiology Research, 6, 2909–2917.

    CAS  Google Scholar 

  2. Teague, W. M., & Brumm, P. J. (1992). Commercial enzymes for starch hydrolysis products. In F. W. Schenck & R. E. Hebeda (Eds.), Starch hydrolysis product: worldwide technology, production, and application (pp. 45–77). New York: VCH.

    Google Scholar 

  3. Saha, B. C., & Zeikus, J. G. (1991). Characterization of thermostable α-glucosidase from Clostridium thermohydrosulfurium 39E. Applied Microbiology Biotechnology, 35, 568–571.

    Article  CAS  Google Scholar 

  4. Ahmed, K. S., Milosavić, N. B., Popović, M. M., Prodanović, R. M., Knežević, Z. D., & Jankov, R. M. (2007). Preparation and studies on immobilized α-glucosidase from baker’s yeast Saccharomyces cerevisiae. Journal of the Serbian Chemical Society, 72, 1255–1263.

    Article  CAS  Google Scholar 

  5. Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: tools for biotechnological processes. Biomolecules, 4, 117–139.

    Article  Google Scholar 

  6. Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., & Azevedo, V. (2012). Up-to-date insight on industrial enzymes applications and global market. Journal of Bioprocessing and Biotechniques, S4, 002. doi:10.4172/2155-9821.S4-002.

    Google Scholar 

  7. Krajewska, B. (2004). Application of chitin and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–139.

    Article  CAS  Google Scholar 

  8. Yan, M., Ge, J., Liu, Z., & Ouyang, P. (2006). Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. Journal of the American Chemical Society, 128, 11008–11009.

    Article  CAS  Google Scholar 

  9. Hegedűs, I., & Nagy, E. (2009). Improvement of chymotrypsin enzyme stability as single enzyme nanoparticles. Chemical Engineering Science, 64, 1053–1060.

    Article  Google Scholar 

  10. Mateo, C., Grazu, V., Palomo, J. M., Lopez-Gallego, F., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2, 1022–1033.

    Article  CAS  Google Scholar 

  11. Sheldon, R. A., Schoevaart, R., & Langen, L. M. V. (2005). Cross-linked enzyme aggregates (CLEAS): a novel and versatile method for enzymatic immobilization. Biocatalysis and Biotransformation, 23, 141–147.

    Article  CAS  Google Scholar 

  12. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis and Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  13. Blanco, R. M., Terreros, P., Munoz, N., & Serra, E. (2007). Ethanol improves lipase immobilization on a hydrophobic support. Journal of Molecular Catalysis B: Enzymatic, 47, 13–20.

    Article  CAS  Google Scholar 

  14. Mahmoud, D. A. R., & Helmy, W. A. (2009). Potential application of immobilization technology in enzyme and biomass production. Journal of Applied Sciences Research, 5, 2466–2476.

    CAS  Google Scholar 

  15. Talekar, S., Ghodake, V., Kate, A., Samant, N., Kumar, C., & Gadagkar, S. (2010). Preparation and characterization of crosslinked enzyme aggregates of Saccharomyces cerevisiae invertase. Australian Journal of Basic and Applied Sciences, 4, 4760–4765.

    CAS  Google Scholar 

  16. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 6, 185–205.

    Article  Google Scholar 

  17. Romo-Sánchez, S., Camacho, C., Ramirez, H. L., & Arévalo-Villena, M. (2014). Immobilization of commercial cellulase and xylanase by different methods using two polymeric supports. Advances in Bioscience and Biotechnology, 5, 517–526.

    Article  Google Scholar 

  18. Zhang, W., Qiu, J., Feng, H., Zang, L., & Sakai, E. (2015). Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. Journal of Magnetism and Magnetic Materials, 375, 117–123.

    Article  CAS  Google Scholar 

  19. Bibi, Z., Shahid, F., Ul Qader, S. A., & Aman, A. (2015). Agar-agar entrapment increases the stability of endo-β-1, 4-xylanase for repeated biodegradation of xylan. International Journal of Biological Macromolecules, 75, 121–127.

    Article  CAS  Google Scholar 

  20. Sun, P., Hui, C., Wang, S., Khan, R. A., Zhang, Q., & Zhao, Y. H. (2016). Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic Fe3O4 nanoparticles and wheat bran. Journal of Hazardous Materials, 301, 65–73.

    Article  CAS  Google Scholar 

  21. Gonzalez-Saiz, J. M., & Pizarro, C. (2001). Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. European Polymer Journal, 37, 435–444.

    Article  CAS  Google Scholar 

  22. Ul Qader, S. A., Aman, A., & Azhar, A. (2011). Continuous production of dextran from immobilized cells of Leuconostoc mesenteroides KIBGE HA1 using acrylamide as a support. Indian Journal of Microbiology, 51, 279–282.

    Article  Google Scholar 

  23. Rehman, H. U., Aman, A., Nawaz, M. A., Karim, A., Ghani, M., Baloch, A. H., & Ul Qader, S. A. (2016). Immobilization of pectin depolymerising polygalacturonase using different polymers. International Journal of Biological Macromolecules, 82, 127–133.

    Article  CAS  Google Scholar 

  24. Cao, L. (2006). Immobilized enzymes: past, present and prospects (In Carrier-bound immobilized enzymes: Principles, application and design). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527607668.ch1.

    Google Scholar 

  25. Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. Biotech, 3, 1–9.

    Google Scholar 

  26. Rai, A. K., Prakash, O., Singh, J., & Singh, P. M. (2013). Immobilization of cauliflower myrosinase on agar agar matrix and its application with various effectors. Advances in Biochemistry, 1, 51–56.

    Article  CAS  Google Scholar 

  27. Ghani, M., Ansari, A., Aman, A., Zohra, R. R., Siddiqui, N. N., & Ul Qader, S. A. (2013). Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes. Pakistan Journal of Pharmaceutical Sciences, 26, 691–697.

    CAS  Google Scholar 

  28. Trinder, P. (1969). Determination of blood glucose using 4-amino phenazone as oxygen acceptor. Journal of Clinical Pathology, 22, 246.

    Article  CAS  Google Scholar 

  29. Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry, 6, 24–27.

    Article  CAS  Google Scholar 

  30. Lineweaver, H., & Burke, D. (1934). Determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  31. Baek, K., Clay, N. E., Qin, E. C., Sullivan, K. M., Kim, D. H., & Kong, H. (2015). In situ assembly of the collagen-polyacrylamide interpenetrating network hydrogel: enabling decoupled control of stiffness and degree of swelling. European Polymer Journal, 72, 413–422.

    Article  CAS  Google Scholar 

  32. Munjal, N., & Sawhney, S. K. (2002). Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology, 30, 613–619.

    Article  CAS  Google Scholar 

  33. Kumar, S., Dwevedi, A., & Kayastha, A. M. (2009). Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: analytical applications. Journal of Molecular Catalysis B: Enzymatic, 58, 138–145.

    Article  CAS  Google Scholar 

  34. Quiroga, E., Illanes, C. O., Ochoa, N. A., & Barberis, S. (2011). Performance improvement of araujiain, a cystein phytoprotease, by immobilization within calcium alginate beads. Process Biochemistry, 46, 1029–1034.

    Article  CAS  Google Scholar 

  35. Das, N., Kayastha, A. M., & Malhotra, O. P. (1998). Immobilization of urease from pigeon pea (Cajanus cajan L.) in polyacrylamide gels and calcium alginate beads. Biotechnology and Applied Biochemistry, 27, 25–29.

    Article  CAS  Google Scholar 

  36. Rehman, H. U., Aman, A., Zohra, R. R., & Ul Qader, S. A. (2014). Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydrate Polymers, 102, 622–626.

    Article  Google Scholar 

  37. Kumar, D., Muthukumar, M., & Garg, N. (2012). Kinetics of fungal extracellular alpha-amylase from Fusarium solani immobilized in calcium alginate beads. Journal of Environmental Biology, 33, 1021–1025.

    CAS  Google Scholar 

  38. Dey, G., Bhupinder, S., & Banerjee, R. (2003). Immobilization of α-amylase produced by Bacillus circulans GRS 313. Brazilian Archives of Biology and Technology, 46, 167–176.

    Article  CAS  Google Scholar 

  39. Ertan, F., Yagar, H., & Balkan, B. (2007). Optimization of α‐amylase immobilization in calcium alginate beads. Preparative Biochemistry and Biotechnology, 37, 195–204.

    Article  CAS  Google Scholar 

  40. Rehman, H. U., Nawaz, M. A., Aman, A., Baloch, A. H., & Ul Qader, S. A. (2014). Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 on chitosan beads for continuous degradation of pectin polymers. Biocatalysis and Agricultural Biotechnology, 3, 282–287.

    Article  Google Scholar 

  41. Kara, F., Demirelm, G., & Tümtürk, H. (2006). Immobilization of urease by using chitosan-alginate and poly(acrylamide-co-acrylic acid)/kappa-carrageenan supports. Bioprocess and Biosystem Engineering, 29, 207–211.

    Article  CAS  Google Scholar 

  42. Chang, M. Y., & Juang, R. S. (2005). Activities, stabilities and reaction kinetics of three free and chitosan-clay composite immobilized enzymes. Enzyme and Microbial Technology, 36, 75–82.

    Article  CAS  Google Scholar 

  43. Awad, G. E. A., Abd El Aty, A. A., Shehata, A. N., Hassan, M. E., & Elnashar, M. M. (2016). Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin. 3 Biotech, 6, 14. doi:10.1007/s13205-015-0338-x.

    Article  Google Scholar 

  44. Kumari, A., Kaur, B., Srivastava, R., & Sangwan, R. S. (2015). Isolation and immobilization of alkaline protease on mesoporous silica and mesoporous ZSM-5 zeolite materials for improved catalytic properties. Biochemistry and Biophysics Reports, 2, 108–114.

    Article  Google Scholar 

  45. Pang, S., Wu, Y., Zhang, X., Li, B., Ouyang, J., & Ding, M. (2015). Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochemistry. doi:10.1016/j.procbio.2015.11.033.

    Google Scholar 

  46. Guzik, U., Hupert-Kocurek, K., Marchlewicz, A., & Wojcieszyńska, D. (2014). Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. Electronic Journal of Biotechnology, 17, 83–88.

    Article  Google Scholar 

  47. Guzik, U., Hupert-Kocurek, K., Sitnik, M., & Wojcieszyńska, D. (2013). High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis, cis-muconic acid production. Antonie Leeuwenhoek, 103, 1297–1307.

    Article  CAS  Google Scholar 

  48. Mai, T. H. A., Tran, V. N., & Le, V. V. M. (2013). Biochemical studies on the immobilized lactase in the combined alginate-carboxymethyl cellulose gel. Biochemical Engineering Journal, 74, 81–87.

    Article  CAS  Google Scholar 

  49. Shah, P., Sridevi, N., Prabhune, A., & Ramaswamy, V. (2008). Structural features of penicillin acylase adsorption on APTES fuctionalized SBA-15. Microporous and Mesoporous Materials, 116, 157–165.

    Article  CAS  Google Scholar 

  50. Prasad, M., & Palanivelu, P. (2015). Immobilization of a thermostable, fungal recombinant chitinase on biocompatible chitosan beads and the properties of the immobilized enzyme. Biotechnology and Applied Biochemistry, 62, 523–529.

    Article  CAS  Google Scholar 

  51. Nyari, N. L. D., Fernandes, I. A., Bustamante-Vargas, C. E., Steffens, C., de Oliveira, D., Zeni, J., Rigo, E., & Dallago, R. M. (2016). In situ immobilization of Candida antarctica B lipase in polyurethane foam support. Journal of Molecular Catalysis B: Enzymatic, 124, 52–61.

    Article  CAS  Google Scholar 

  52. Tripathi, P., Kumari, A., Rath, P., & Kayastha, A. M. (2007). Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: a comparative study. Journal of Molecular Catalysis B: Enzymatic, 49, 69–74.

    Article  CAS  Google Scholar 

  53. Wang, Q., Peng, L., Li, G., Zhang, P., Li, D., Huang, F., & Wei, Q. (2013). Activity of laccase immobilized on TiO2-montmorillonite complexes. International Journal of Molecular Sciences, 14, 12520–12532.

    Article  Google Scholar 

  54. Nawaz, M. A., Rehman, H. U., Bibi, Z., Aman, A., & Ul Qader, S. A. (2015). Continuous degradation of maltose by enzyme entrapment technology using calcium alginate beads as a matrix. Biochemistry and Biophysics Reports, 4, 250–256.

    Article  Google Scholar 

  55. Shahrestani, H., Taheri-Kafrani, A., Soozanipour, A., & Tavakoli, O. (2016). Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochemical Engineering Journal, 109, 51–58.

    Article  CAS  Google Scholar 

  56. Tavares, A. P. M., Silva, C. G., Dražić, G., Silva, A. M. T., Loureiro, J. M., & Faria, J. L. (2015). Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. Journal of Colloid and Interface Science, 454, 52–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Nawaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, M.A., Aman, A., Rehman, H.U. et al. Polyacrylamide Gel-Entrapped Maltase: An Excellent Design of Using Maltase in Continuous Industrial Processes. Appl Biochem Biotechnol 179, 383–397 (2016). https://doi.org/10.1007/s12010-016-2001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2001-3

Keywords

Navigation