Skip to main content

Advertisement

Log in

Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu, J., Dolan, M. C., Medrano, G., Cramer, C. L., et al. (2012). Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnology Advances, 30, 1171–1184.

    Article  CAS  Google Scholar 

  2. Shih, M.-H. S., & Doran, P. K. (2009). Foreign protein production using plant cell and organ cultures: advantages and limitations. Biotechnology Advances, 27, 1036–1042.

    Article  CAS  Google Scholar 

  3. Farran, I., Sanchez-Serrano, J. J., Medina, I. F., Prieto, J., et al. (2002). Targeted expression of human serum albumin to potato tubers. Transgenic Research, 11, 337–346.

    Article  CAS  Google Scholar 

  4. Wilken, L. R., & Nikolov, Z. L. (2012). Recovery and purification of plant-made recombinant proteins. Biotechnology Advances, 30, 419–433.

    Article  CAS  Google Scholar 

  5. Bayhan, D., & Daniell, H. (2011). Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnology Journal, 9, 585–598.

    Article  Google Scholar 

  6. Ramessar, K., Rademacher, T., Saek, M., Stadlmann, J., et al. (2008). Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proceedings of the National Academy of Sciences USA, 105, 3727–3732.

    Article  CAS  Google Scholar 

  7. Aviezer, D., Brill-Almon, E., Shaaltiel, Y., Hashmueli, S., et al. (2009). A plant derived recombinant human glucocerebrosidase enzyme a preclinical and phase I investigation. Plos One, 4(3), e4792. doi:10.1371/journal.pone.0004792.

    Article  Google Scholar 

  8. Brebner, J. A., & Stockley, R. A. (2013). Recent advances in α1-antitrypsin deficiency related lung disease. Expert Reviews in Respiratory Medicine, 7, 213–230.

    Article  CAS  Google Scholar 

  9. Karnaukhova, E., Ophir, Y., & Golding, B. (2006). Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use. Amino Acids, 30, 317–332.

    Article  CAS  Google Scholar 

  10. Jha, S., Agarwal, S., Sanyal, I., Jain, V., et al. (2010). Over-expression of human serum alpha-1 protease inhibitor (α1-PI) in alternate hosts for therapeutic applications. Journal of Surgical Sciences, 1, 31–37.

    Google Scholar 

  11. Huang, J., Sutliff, T. D., Wu, L., Nandi, S., et al. (2001). Expression and purification of functional human α-1-antitrypsin from cultured plant cells. Biotechnology Progress, 17, 126–133.

    Article  CAS  Google Scholar 

  12. Trexler, M. M., McDonald, K. A., & Jackman, A. P. (2005). A cyclic semi-continuous process for production of human alpha-1-antitrypsin using metabolically induced plant cell suspension cultures. Biotechnology Progress, 21, 321–328.

    Article  CAS  Google Scholar 

  13. Huang, T. K., Plesha, M. A., & McDonald, K. A. (2010). Semi-continuous bioreactor production of a recombinant human therapeutic protein using a chemically inducible viral amplicon expression system in transgenic plant cell suspension cultures. Biotechnology and Bioengineering, 106, 408–421.

    CAS  Google Scholar 

  14. Zhang, L., Shi, J., Jiang, D., Stupak, J., et al. (2012). Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. Journal of Biotechnology, 164, 300–308.

    Article  CAS  Google Scholar 

  15. Mishra, S., Jha, S., Singh, R., Chaudhary, S., et al. (2013). Transgenic chickpea expressing a recombinant human α1-proteinase inhibitor (α1-PI) driven by a seed-specific promoter from the common bean Phaseolus vulgaris (L.). Plant Cell Tissue Organ Culture, 115, 23–33.

    Article  CAS  Google Scholar 

  16. Agarwal, S., Singh, R., Sanyal, I., & Amla, D. V. (2008). Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants. Transgenic Research, 17, 881–896.

    Article  CAS  Google Scholar 

  17. Jha, S., Agarwal, S., Sanyal, I., Jain, G. K., et al. (2012). Differential subcellular targeting of recombinant human α1-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants. Plant Science, 196, 53–66.

    Article  CAS  Google Scholar 

  18. Agarwal, S., Jha, S., Sanyal, I., & Amla, D. V. (2009). Effect of point mutations in translation initiation context on the expression of recombinant human α1-proteinase inhibitor in transgenic tomato plants. Plant Cell Reports, 28, 1791–1798.

    Article  CAS  Google Scholar 

  19. Jha, S., Sanyal, I., & Amla, D. V. (2014). Single amino acid substitutions in recombinant plant-derived human α1-proteinase inhibitor confer enhanced stability and functional efficacy. Biochimica et Biophysica Acta, 1840, 416–427.

    Article  CAS  Google Scholar 

  20. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. New York: Cold Spring Harbor.

    Google Scholar 

  21. Agarwal, S., Jha, S., Sanyal, I., & Amla, D. V. (2010). Expression and purification of recombinant human α1-proteinase inhibitor and its single amino acid substituted variants in Escherichia coli for enhanced stability and biological activity. Journal of Biotechnology, 147, 64–72.

    Article  CAS  Google Scholar 

  22. Daniell, H., Singh, N. D., Mason, H., & Streatfield, S. J. (2009). Plant-made vaccine antigens and biopharmaceuticals. Trends in Plant Science, 14(12), 669–679.

    Article  CAS  Google Scholar 

  23. Evangelista, R. L., Kusnadi, A. R., Howard, J. A., & Nikolov, Z. L. (1998). Process and economic evaluation of the extraction and purification of recombinant β-glucuronidase from transgenic corn. Biotechnology Progress, 14, 607–614.

    Article  CAS  Google Scholar 

  24. Menkhaus, T. J., Bai, Y., Zhang, C. M., Nikolov, Z. L., et al. (2004). Considerations for the recovery of recombinant proteins from plants. Biotechnology Progress, 20, 1001–1014.

    Article  CAS  Google Scholar 

  25. Azzoni, A. R., Farinas, C. S., & Miranda, E. A. (2005). Transgenic corn seed for recombinant protein production: relevant aspects on the aqueous extraction of native components. Journal of the Science of Food and Agriculture, 85, 609–614.

    Article  CAS  Google Scholar 

  26. Zhang, D., Nandi, S., Bryan, P., Pettit, S., et al. (2010). Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expression and Purification, 74, 69–79.

    Article  CAS  Google Scholar 

  27. Holler, C., & Zhang, C. (2008). Purification of an acidic recombinant protein from transgenic tobacco. Biotechnology and Bioengineering, 99, 902–909.

    Article  CAS  Google Scholar 

  28. Dokka, M. K., Seva, L., & Davuluri, S. P. (2015). Isolation and purification of trypsin inhibitors from the seeds of Abelmoschus moschatus L. Applied Biochemistry and Biotechnology, 175, 3750–3762.

    Article  CAS  Google Scholar 

  29. Ng, T. B., Chan, Y. S., Ng, C. C. W., & Wong, J. H. (2015). Purification and characterization of a lectin from green split peas (Pisum sativum). Applied Biochemistry and Biotechnology, 177, 1374–1385.

    Article  CAS  Google Scholar 

  30. Platis, D., Drossard, J., Fischer, R., Ma, J. K. C., et al. (2008). New downstream processing strategy for the purification of monoclonal antibodies from transgenic tobacco plants. Journal of Chromatography A, 1211, 80–89.

    Article  CAS  Google Scholar 

  31. Ross, K. C., & Zhang, C. (2010). Separation of recombinant β-glucuronidase from transgenic tobacco by aqueous two-phase extraction. Biochemical Engineering Journal, 49, 343–350.

    Article  CAS  Google Scholar 

  32. Lai, H., Engle, M., Fuch, A., Keller, T., et al. (2010). Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proceedings of the National Academy of Sciences, USA, 107, 2419–2424.

    Article  CAS  Google Scholar 

  33. Garger, S. J., Holtz, B., McCulloch, M. J., & Turpen, T. H. (2000). Biosource Technologies, Inc., Process for isolating and purifying viruses, soluble proteins and peptides from plant sources. US Patent No. 6037456.

  34. Asenjo, J. A., & Andrews, B. A. (2009). Protein purification using chromatography: selection of type, modelling and optimization of operating conditions. Journal of Molecular Recognition, 22, 65–76.

    Article  CAS  Google Scholar 

  35. Guiochon, G., & Beaver, L. A. (2011). Separation science is the key to successful biopharmaceuticals. Journal of Chromatography A, 1218, 8836–8858.

    Article  CAS  Google Scholar 

  36. Hercz, A., & Barton, M. (1977). The purification and properties of human α1-antitrypsin (α1-Antiprotease) variant Z. European Journal of Biochemistry, 74, 603–610.

    Article  CAS  Google Scholar 

  37. Woodard, S. L., Wilken, L. R., Barros, G. O. F., White, S. G., et al. (2009). Evaluation of monoclonal antibody and phenolic extraction from transgenic Lemna for purification process development. Biotechnology and Bioengineering, 104, 562–571.

    Article  CAS  Google Scholar 

  38. Hanke, A. T., & Ottens, M. (2014). Purifying biopharmaceuticals: knowledge-based chromatographic process development. Trends in Biotechnology, 32(4), 210–220.

    Article  CAS  Google Scholar 

  39. Gomord, V., Fitchette, A. C., Menu-Bouaouiche, L., Saint-Jore Dupas, C., et al. (2010). Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnology Journal, 8, 564–587.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. C. S. Nautiyal, Director, CSIR-NBRI, Lucknow, for providing infrastructural support and Dr. Vinod Bhakuni, CSIR-CDRI, Lucknow, for providing facility for optical spectroscopy. We thankfully acknowledge the Council of Scientific and Industrial Research (C.S.I.R.), New Delhi, India, for providing fellowship to SJ and SA. This work was carried out under the CSIR-NBRI In-house Project OLP 0031. SJ also thankfully acknowledges DST-SERB for Young Scientist grant (SB/YS/LS-39/2014), UGC for Start-up research grant (F.30-50/2014-BSR) and UGC-CAS program in department of Botany, J.N.V. University, Jodhpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Jha.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Pretreatment of leaf extracts of transgenic tomato plants by (NH4)2SO4 precipitation (salting-out). (PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S., Agarwal, S., Sanyal, I. et al. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants. Appl Biochem Biotechnol 179, 220–236 (2016). https://doi.org/10.1007/s12010-016-1989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-1989-8

Keywords

Navigation