Skip to main content
Log in

Antioxidative Metabolites Synthesized by Marine Pigmented Vibrio sp. and Its Protection on Oxidative Deterioration of Membrane Lipids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial strain Vibrio sp. (PIGB 184) isolated from water samples of the Arabian Sea and identified through 16S rRNA demonstrated the production of pigmentary antioxidants with higher ABTS activities 90.9 ± 0.42 % in comparison with the standard commercial pigmented antioxidant, quercetin 88.8 ± 1.4 %. Antioxidative metabolites of this strain substantially inhibit the lipid peroxidation (LPO) reactions tested in sheep liver and brain. The antioxidant compounds produced by the Vibrio sp. (PIGB 184), analysed by GC-MS, reveals that it is composed mostly of phenol, 2,4-bis(1,1-dimethylethyl) and pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl). The interrelationship assessed between LPO and the phenolic compounds showed significant correlation with anti-LPO properties (R 2 = 0.9698 to 0.9861). These compounds are responsible for obstruction of harmful radical associated biochemical reactions in biological systems. Pigmented metabolites also tested for attributive biological properties against pathogenic bacteria showed prominent inhibition towards Gram-positive organisms (31.25 to 62.5 μg ml−1). From this study, it may be suggested that the marine bacterium PIGB 184 could be used as a potential bio-resource for antioxidants and needs to be worked out for mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halliwell, B., & Gutteridge, J. M. (2007). Free radicals in biology and medicine (4th ed.). New York, Oxford: Clarendon Press, Oxford University Press.

    Google Scholar 

  2. Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India, 52, 794–804.

    CAS  Google Scholar 

  3. Dekkers, J. C., Van Doornen, L. J. P. H., & Kemper, C. G. (1996). The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Medicine, 21, 213–238.

    Article  CAS  Google Scholar 

  4. Kim, S. K., & Wijesekara, I. (2013). Marine-derived nutraceuticals: trends and prospects. In S. K. Kim (Ed.), Marine nutraceuticals: prospects and perspectives (p. 464). Boca Raton: CRC Press.

    Google Scholar 

  5. Hamed, I., Ozogul, F., Ozogul, Y., & Regenstein, J. M. (2015). Marine bioactive compounds and their health benefits: a review. Comprehensive Reviews in Food Science and Food Safety, 14, 446–65.

    Article  CAS  Google Scholar 

  6. Correa-Llanten, D. N., Amenabar, M. J., & Blamey, J. M. (2012). Antioxidant capacity of novel pigments from an Antarctic bacterium. Journal of Microbiology, 50, 374–379.

    Article  CAS  Google Scholar 

  7. Lavy, A., Neeman, Y., & Fuhrman, B. (2005). The antioxidative effect of the bacteria Dienococcus radiophilus against LDL lipid peroxidation. European Journal of Nutrition, 44, 281–284.

    Article  CAS  Google Scholar 

  8. Slade, D., & Radman, M. (2011). Oxidative stress resistance in Deinococcus radiodurans. Microbiology and Molecular Biology Reviews, 75, 133–191.

    Article  CAS  Google Scholar 

  9. Takao, T., Kitatani, F., Watanabe, N., Yagi, A., & Sakata, K. (1994). A simple screening method for antioxidants and isolation of several antioxidant produced by marine bacteria from fish and shellfish. Bioscience Biotechnology and Biochemistry, 58, 1780–1783.

    Article  CAS  Google Scholar 

  10. Pawar, R. T., Mohandass, C., Sivaperumal, E., Sabu, E., Rajasabapathy, R., & Jagtap, T. G. (2015). Epiphytic marine pigmented bacteria: a prospective source for natural antioxidants. Brazilian Journal of Microbiology, 46, 29–39.

    Article  Google Scholar 

  11. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237.

    Article  CAS  Google Scholar 

  12. Larrauri, J. A., Sanchez-Moreno, C., & Saura-Calixo, F. (1998). Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. Journal of Agricultural Food Chemistry, 46, 2694–2697.

    Article  CAS  Google Scholar 

  13. Ferreira, I. C. F. R., Baptista, P., Vilas-Boas, M., & Barros, L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chemistry, 100, 1511–1516.

    Article  CAS  Google Scholar 

  14. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Analytical Biochemistry, 239, 70–76.

    Article  CAS  Google Scholar 

  15. Shan, B., Cai, Y. Z., Brooks, J. D., & Corke, H. (2007). The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology, 117, 112–119.

    Article  CAS  Google Scholar 

  16. Pawar, R., Nagvenkar, S., & Jagtap, T. (2013). Protective role of edible clam Paphia malabarica (Chemnitz) against lipid peroxidation and free radical. Turkish Journal of Biochemistry, 38, 138–144.

    Article  CAS  Google Scholar 

  17. Lowry, O. H., Rosbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  18. Horta, A., Pinteus, S., Alves, C., Fino, N., Silva, J., Fernandez, S., Rodrigues, A., & Pedrosa, R. (2014). Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Marine Drugs, 12, 1676–1689.

    Article  CAS  Google Scholar 

  19. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematic (pp. 115–175). New York: Wiley.

    Google Scholar 

  20. Walker, R. B., & Everette, J. D. (2009). Comparative reaction rates of various antioxidants with ABTS radical cation. Journal of Agricultural and Food Chemistry, 57, 1156–1161.

    Article  CAS  Google Scholar 

  21. Godinho, I., Pires, C., Pedro, S., Teixeira, B., Mendes, R., Nunes, M. L., & Batista, I. (2015). Antioxidant properties of fish protein hydrolysates prepared from cod protein hydrolysate by Bacillus sp. Applied Biochemistry and Biotechnology, 1-18. doi:10.1007/s12010-015-1931-5.

  22. Martin, K. R., & Appel, C. L. (2010). Polyphenols as dietary supplements: a double-edged sword. Nutrition and Dietary Supplements, 2, 1–12.

    CAS  Google Scholar 

  23. Wang, M., Li, J., Rangarajan, M., Shao, Y., La Voie, E. J., Huang, T. C., & Ho, C. T. (1998). Antioxidative phenolic compounds from sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46, 4869–4873.

    Article  CAS  Google Scholar 

  24. Hajji, S., Younes, I., Rinaudo, M., Jellouli, K., & Nasri, M. (2015). Characterization and in vitro evaluation of cytotoxicity, antimicrobial and antioxidant activities of chitosans extracted from three different marine sources. Applied Biochemistry and Biotechnology, 177, 18–35.

    Article  CAS  Google Scholar 

  25. Sun, J., Kan, F., Liu, P., He, S., Mou, H., Xue, C., & Mao, X. (2015). Screening of microorganisms from deep-sea mud for Antarctic krill (Euphausia superba) fermentation and evaluation of the bioactive compounds. Applied Biochemistry and Biotechnology, 175, 1664–77.

    Article  CAS  Google Scholar 

  26. Koren, E., Kohen, R., Ovadia, H., & Ginsburg, I. (2009). Bacteria coated by polyphenols acquire potent oxidant-scavenging capacities. Experimental Biology and Medicine, 234, 940–951.

    Article  CAS  Google Scholar 

  27. Asencio, G., Lavin, P., Alegria, K., Dominguez, M., Bello, H., Gonzilez-Rocha, G., & Gonzalez-Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17, 1–5.

    Article  Google Scholar 

  28. Isnansetyo, A., & Kamei, Y. (2003). Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. International Journal of Systematic and Evolutionary Microbiology, 53, 583–588.

    Article  CAS  Google Scholar 

  29. Balakrishnan, D., Bibiana, A. S., Vijayakumar, A., Santhosh, R. S., Dhevendran, K., & Nithyanand, P. (2015). Antioxidant activity of bacteria associated with the marine sponge Tedania anhelans. Indian Journal of Microbiology, 55, 13–18.

    Article  CAS  Google Scholar 

  30. Padmavathi, A. R., Abinaya, B., & Pandian, S. K. (2014). Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling, 30, 1111–1122.

    Article  CAS  Google Scholar 

  31. Lee, S. (2010). Phenol, 2,4-Bis(1,1-Dimethylethyl)-,1,1’,1”-Phosphite. e-EROS encyclopedia of reagents for organic synthesis. New York: Wiley. doi:10.1002/047084289X.rn01170.

    Google Scholar 

  32. Kuo, Y. H., Liang, T. W., Liu, K. C., Hsu, Y. W., Hsu, H. C., & Wang, S. L. (2011). Isolation and identification of a novel antioxidant with antitumor activity from Serratia ureilytica using squid pen as fermentation substrate. Marine Biotechnology, 13, 451–461.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director of NIO, Dr. N. Ramaiah and Dr. P. Vethamony for providing lab support. Mr. R. M. Meena is acknowledged for his help in sequence analysis. This work was supported by the projects PSC0206 and BSC0111 under CSIR Grant. The authors declare that there are no conflicts of interest. This is NIO contribution number 5852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mohandass.

Ethics declarations

Conflict of Interest

All authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, R., Mohandass, C., Dastager, S.G. et al. Antioxidative Metabolites Synthesized by Marine Pigmented Vibrio sp. and Its Protection on Oxidative Deterioration of Membrane Lipids. Appl Biochem Biotechnol 179, 155–167 (2016). https://doi.org/10.1007/s12010-016-1985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-1985-z

Keywords

Navigation