Advertisement

Applied Biochemistry and Biotechnology

, Volume 179, Issue 1, pp 155–167 | Cite as

Antioxidative Metabolites Synthesized by Marine Pigmented Vibrio sp. and Its Protection on Oxidative Deterioration of Membrane Lipids

  • Ravindra Pawar
  • C. MohandassEmail author
  • Syed G. Dastager
  • Yogesh M. Kolekar
  • Rahul Malwankar
Article

Abstract

Bacterial strain Vibrio sp. (PIGB 184) isolated from water samples of the Arabian Sea and identified through 16S rRNA demonstrated the production of pigmentary antioxidants with higher ABTS activities 90.9 ± 0.42 % in comparison with the standard commercial pigmented antioxidant, quercetin 88.8 ± 1.4 %. Antioxidative metabolites of this strain substantially inhibit the lipid peroxidation (LPO) reactions tested in sheep liver and brain. The antioxidant compounds produced by the Vibrio sp. (PIGB 184), analysed by GC-MS, reveals that it is composed mostly of phenol, 2,4-bis(1,1-dimethylethyl) and pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl). The interrelationship assessed between LPO and the phenolic compounds showed significant correlation with anti-LPO properties (R 2 = 0.9698 to 0.9861). These compounds are responsible for obstruction of harmful radical associated biochemical reactions in biological systems. Pigmented metabolites also tested for attributive biological properties against pathogenic bacteria showed prominent inhibition towards Gram-positive organisms (31.25 to 62.5 μg ml−1). From this study, it may be suggested that the marine bacterium PIGB 184 could be used as a potential bio-resource for antioxidants and needs to be worked out for mass production.

Keywords

Marine pigmented bacteria Antioxidants Lipid peroxidation Phenolics Pathogen inhibition 

Notes

Acknowledgments

The authors would like to thank the Director of NIO, Dr. N. Ramaiah and Dr. P. Vethamony for providing lab support. Mr. R. M. Meena is acknowledged for his help in sequence analysis. This work was supported by the projects PSC0206 and BSC0111 under CSIR Grant. The authors declare that there are no conflicts of interest. This is NIO contribution number 5852.

Compliance with Ethical Standards

Conflict of Interest

All authors declare that there are no conflicts of interest.

References

  1. 1.
    Halliwell, B., & Gutteridge, J. M. (2007). Free radicals in biology and medicine (4th ed.). New York, Oxford: Clarendon Press, Oxford University Press.Google Scholar
  2. 2.
    Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India, 52, 794–804.Google Scholar
  3. 3.
    Dekkers, J. C., Van Doornen, L. J. P. H., & Kemper, C. G. (1996). The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Medicine, 21, 213–238.CrossRefGoogle Scholar
  4. 4.
    Kim, S. K., & Wijesekara, I. (2013). Marine-derived nutraceuticals: trends and prospects. In S. K. Kim (Ed.), Marine nutraceuticals: prospects and perspectives (p. 464). Boca Raton: CRC Press.Google Scholar
  5. 5.
    Hamed, I., Ozogul, F., Ozogul, Y., & Regenstein, J. M. (2015). Marine bioactive compounds and their health benefits: a review. Comprehensive Reviews in Food Science and Food Safety, 14, 446–65.CrossRefGoogle Scholar
  6. 6.
    Correa-Llanten, D. N., Amenabar, M. J., & Blamey, J. M. (2012). Antioxidant capacity of novel pigments from an Antarctic bacterium. Journal of Microbiology, 50, 374–379.CrossRefGoogle Scholar
  7. 7.
    Lavy, A., Neeman, Y., & Fuhrman, B. (2005). The antioxidative effect of the bacteria Dienococcus radiophilus against LDL lipid peroxidation. European Journal of Nutrition, 44, 281–284.CrossRefGoogle Scholar
  8. 8.
    Slade, D., & Radman, M. (2011). Oxidative stress resistance in Deinococcus radiodurans. Microbiology and Molecular Biology Reviews, 75, 133–191.CrossRefGoogle Scholar
  9. 9.
    Takao, T., Kitatani, F., Watanabe, N., Yagi, A., & Sakata, K. (1994). A simple screening method for antioxidants and isolation of several antioxidant produced by marine bacteria from fish and shellfish. Bioscience Biotechnology and Biochemistry, 58, 1780–1783.CrossRefGoogle Scholar
  10. 10.
    Pawar, R. T., Mohandass, C., Sivaperumal, E., Sabu, E., Rajasabapathy, R., & Jagtap, T. G. (2015). Epiphytic marine pigmented bacteria: a prospective source for natural antioxidants. Brazilian Journal of Microbiology, 46, 29–39.CrossRefGoogle Scholar
  11. 11.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237.CrossRefGoogle Scholar
  12. 12.
    Larrauri, J. A., Sanchez-Moreno, C., & Saura-Calixo, F. (1998). Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. Journal of Agricultural Food Chemistry, 46, 2694–2697.CrossRefGoogle Scholar
  13. 13.
    Ferreira, I. C. F. R., Baptista, P., Vilas-Boas, M., & Barros, L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chemistry, 100, 1511–1516.CrossRefGoogle Scholar
  14. 14.
    Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Analytical Biochemistry, 239, 70–76.CrossRefGoogle Scholar
  15. 15.
    Shan, B., Cai, Y. Z., Brooks, J. D., & Corke, H. (2007). The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology, 117, 112–119.CrossRefGoogle Scholar
  16. 16.
    Pawar, R., Nagvenkar, S., & Jagtap, T. (2013). Protective role of edible clam Paphia malabarica (Chemnitz) against lipid peroxidation and free radical. Turkish Journal of Biochemistry, 38, 138–144.CrossRefGoogle Scholar
  17. 17.
    Lowry, O. H., Rosbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.Google Scholar
  18. 18.
    Horta, A., Pinteus, S., Alves, C., Fino, N., Silva, J., Fernandez, S., Rodrigues, A., & Pedrosa, R. (2014). Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Marine Drugs, 12, 1676–1689.CrossRefGoogle Scholar
  19. 19.
    Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematic (pp. 115–175). New York: Wiley.Google Scholar
  20. 20.
    Walker, R. B., & Everette, J. D. (2009). Comparative reaction rates of various antioxidants with ABTS radical cation. Journal of Agricultural and Food Chemistry, 57, 1156–1161.CrossRefGoogle Scholar
  21. 21.
    Godinho, I., Pires, C., Pedro, S., Teixeira, B., Mendes, R., Nunes, M. L., & Batista, I. (2015). Antioxidant properties of fish protein hydrolysates prepared from cod protein hydrolysate by Bacillus sp. Applied Biochemistry and Biotechnology, 1-18. doi: 10.1007/s12010-015-1931-5.
  22. 22.
    Martin, K. R., & Appel, C. L. (2010). Polyphenols as dietary supplements: a double-edged sword. Nutrition and Dietary Supplements, 2, 1–12.Google Scholar
  23. 23.
    Wang, M., Li, J., Rangarajan, M., Shao, Y., La Voie, E. J., Huang, T. C., & Ho, C. T. (1998). Antioxidative phenolic compounds from sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46, 4869–4873.CrossRefGoogle Scholar
  24. 24.
    Hajji, S., Younes, I., Rinaudo, M., Jellouli, K., & Nasri, M. (2015). Characterization and in vitro evaluation of cytotoxicity, antimicrobial and antioxidant activities of chitosans extracted from three different marine sources. Applied Biochemistry and Biotechnology, 177, 18–35.CrossRefGoogle Scholar
  25. 25.
    Sun, J., Kan, F., Liu, P., He, S., Mou, H., Xue, C., & Mao, X. (2015). Screening of microorganisms from deep-sea mud for Antarctic krill (Euphausia superba) fermentation and evaluation of the bioactive compounds. Applied Biochemistry and Biotechnology, 175, 1664–77.CrossRefGoogle Scholar
  26. 26.
    Koren, E., Kohen, R., Ovadia, H., & Ginsburg, I. (2009). Bacteria coated by polyphenols acquire potent oxidant-scavenging capacities. Experimental Biology and Medicine, 234, 940–951.CrossRefGoogle Scholar
  27. 27.
    Asencio, G., Lavin, P., Alegria, K., Dominguez, M., Bello, H., Gonzilez-Rocha, G., & Gonzalez-Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17, 1–5.CrossRefGoogle Scholar
  28. 28.
    Isnansetyo, A., & Kamei, Y. (2003). Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. International Journal of Systematic and Evolutionary Microbiology, 53, 583–588.CrossRefGoogle Scholar
  29. 29.
    Balakrishnan, D., Bibiana, A. S., Vijayakumar, A., Santhosh, R. S., Dhevendran, K., & Nithyanand, P. (2015). Antioxidant activity of bacteria associated with the marine sponge Tedania anhelans. Indian Journal of Microbiology, 55, 13–18.CrossRefGoogle Scholar
  30. 30.
    Padmavathi, A. R., Abinaya, B., & Pandian, S. K. (2014). Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling, 30, 1111–1122.CrossRefGoogle Scholar
  31. 31.
    Lee, S. (2010). Phenol, 2,4-Bis(1,1-Dimethylethyl)-,1,1’,1”-Phosphite. e-EROS encyclopedia of reagents for organic synthesis. New York: Wiley. doi: 10.1002/047084289X.rn01170.Google Scholar
  32. 32.
    Kuo, Y. H., Liang, T. W., Liu, K. C., Hsu, Y. W., Hsu, H. C., & Wang, S. L. (2011). Isolation and identification of a novel antioxidant with antitumor activity from Serratia ureilytica using squid pen as fermentation substrate. Marine Biotechnology, 13, 451–461.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ravindra Pawar
    • 1
  • C. Mohandass
    • 1
    Email author
  • Syed G. Dastager
    • 2
  • Yogesh M. Kolekar
    • 3
  • Rahul Malwankar
    • 2
  1. 1.Biological Oceanography DivisionCSIR-National Institute of OceanographyDona PaulaIndia
  2. 2.NCIM - Resource Centre, CSIR-National Chemical LaboratoryPuneIndia
  3. 3.Division of Biochemical SciencesCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations