Applied Biochemistry and Biotechnology

, Volume 179, Issue 1, pp 94–110 | Cite as

Synthesis and Characterisation of Biocompatible Polymer-Conjugated Magnetic Beads for Enhancement Stability of Urease

  • Yasemin Ispirli DoğaçEmail author
  • Mustafa Teke


We reported natural polymer-conjugated magnetic featured urease systems for removal of urea effectively. The optimum temperature (20–60 °C), optimum pH (3.0–10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0–9.0), operational stability (0–250 min), reusability (18 times) and storage stability (24 weeks) were studied for characterisation of the urease-encapsulated biocompatible polymer-conjugated magnetic beads. Also, the surface groups and chemical structure of the magnetic beads were determined by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The all urease-encapsulated magnetic beads protected their stability of 30–45 % relative activity at 70 °C. A significant increase was observed at their pH stability compared with the free urease for both acidic and alkaline medium. Besides this, their repeatability activity were approximately 100 % during 4th run. They showed residual activity of 50 % after 16 weeks. The importance of this work is enhancement stability of immobilised urease by biocompatible polymer-conjugated magnetic beads for the industrial application based on removal of urea.


Fe3O4 nanoparticles Fe[NiFe]O4 nanoparticles Magnetic polymeric beads Urease encapsulation Urease stability 


  1. 1.
    Koneracka, M., Kopcansky, P. H., Antalik, M., Timko, M., Ramchand, C. N., Lobo, D., Mehta, R. V., & Upadhyay, R. V. (1999). Immobilization of proteins and enzymes to fine magnetic particles. Journal of Magnetism and Magnetic Materials, 201, 427–430.CrossRefGoogle Scholar
  2. 2.
    Elaissari, A., & Bourrel, V. (2001). Thermosensitive magnetic latex particles for controlling protein adsorption and desorption. Journal of Magnetism and Magnetic Materials, 225, 151–155.CrossRefGoogle Scholar
  3. 3.
    Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685.CrossRefGoogle Scholar
  4. 4.
    Konno, T., Watanabe, J., & Ishihara, K. (2004). Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules, 5, 342–347.CrossRefGoogle Scholar
  5. 5.
    Hafeli, U. O., Sweeney, S. M., Beresford, B. A., Sim, E. H., & Macklis, R. M. (1994). Magnetically directed poly(lactic acid) 90Y-microspheres: novel agents for targeted intracavitary radiotherapy. Journal of Biomedical Materials Research, 28, 901–908.CrossRefGoogle Scholar
  6. 6.
    Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100, 1–11.CrossRefGoogle Scholar
  7. 7.
    Ho, K. M., & Li, P. (2008). Design and synthesis of novel magnetic core−shell polymeric particles. Langmuir, 24, 1801–1807.CrossRefGoogle Scholar
  8. 8.
    Grodzinski, P., Silver, M., & Molnar, L. K. (2006). Nanotechnology for cancer diagnostics: promises and challenges. Expert Review of Molecular Diagnostics, 6, 307–318.CrossRefGoogle Scholar
  9. 9.
    Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.CrossRefGoogle Scholar
  10. 10.
    Zee-Cheng, R. K., & Cheng, C. C. (1989). Delivery of anticancer drugs. Methods and Findings in Experimental and Clinical Pharmacology, 11, 439–529.Google Scholar
  11. 11.
    Osaka, T., Matsunaga, T., Nakanishi, T., Arakaki, A., Niwa, D., & Iida, H. (2006). Synthesis of magnetic nanoparticles and their application to bioassays. Analytical and Bioanalytical Chemistry, 384, 593–600.CrossRefGoogle Scholar
  12. 12.
    Zintchenko, A., Ogris, M., & Wagner, E. (2006). Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjugate Chemistry, 17, 766–772.CrossRefGoogle Scholar
  13. 13.
    Chilkoti, A., Dreher, M. R., Meyer, D. E., & Raucher, D. (2002). Targeted drug delivery by thermally responsive polymers. Advanced Drug Delivery Reviews, 54, 613–630.CrossRefGoogle Scholar
  14. 14.
    Lee, Y., Rho, J., & Jung, B. (2003). Preparation of magnetic ion-exchange resins by the suspension polymerization of styrene with magnetite. Journal of Applied Polymer Science, 89, 2058–2067.CrossRefGoogle Scholar
  15. 15.
    Wormuth, K. (2001). Superparamagnetic latex via inverse emulsion polymerization. Journal of Colloid and Interface Science, 241, 366–377.CrossRefGoogle Scholar
  16. 16.
    Horak, D., Semenyuk, N., & Lednický, F. (2003). Effect of the reaction parameters on the particle size in the dispersion polymerization of 2-hydroxyethyl and glycidyl methacrylate in the presence of a ferrofluid. Journal of Polymer Science Part A: Polymer Chemistry, 41, 1848–1863.CrossRefGoogle Scholar
  17. 17.
    Zaitsev, V. S., Filimonov, D. S., Presnyakov, I. A., Gambino, R. J., & Chu, B. (1999). Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. Journal of Colloid and Interface Science, 212, 49–57.CrossRefGoogle Scholar
  18. 18.
    Vestal, C. R., & Zhang, Z. J. (2002). Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. Journal of the American Chemical Society, 124, 14312–14313.CrossRefGoogle Scholar
  19. 19.
    Liu, X., Guan, Y., Ma, Z., & Liu, H. (2004). Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir, 20, 10278–10282.CrossRefGoogle Scholar
  20. 20.
    Juang, R. S., Wu, F. C., & Tseng, R. L. (2001). Solute adsorption and enzyme immobilization on chitosan beads prepared from shrimp shell wastes. Bioresource Technology, 80, 187–193.CrossRefGoogle Scholar
  21. 21.
    Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–139.CrossRefGoogle Scholar
  22. 22.
    Strand, B. L., Morch, Y. A., & Skjak-Braek, G. (2000). Alginate as immobilization matrix for cells. Minerva Biotecnologica., 12, 223–233.Google Scholar
  23. 23.
    Caramori, S. S., & Fernandes, K. F. (2004). Covalent immobilisation of horseradish peroxidase onto poly(ethylene terephthalate)–poly(aniline) composite. Process Biochemistry, 39, 883–888.CrossRefGoogle Scholar
  24. 24.
    Fernandes, K. F., Lima, C. S., Lopes, M., & Collins, C. H. (2004). Properties of horseradish peroxidase immobilised onto polyaniline. Process Biochemistry, 39, 957–962.CrossRefGoogle Scholar
  25. 25.
    Wadiack, D. T., & Carbonell, R. G. (1975). Kinetic behavior of microencapsulated β-galactosidase. Biotechnology and Bioengineering, 17, 1157–1181.CrossRefGoogle Scholar
  26. 26.
    Zerger, B. (1991). Recent advances in the chemistry of an old enzyme, urease. Bioorganic Chemistry, 19, 116–131.CrossRefGoogle Scholar
  27. 27.
    Ngo, T.T., Phan, A.P.H., Yam, C.F., & H.M. (1982). Interference in determination of ammonia with the hypochlorite-alkaline phenol method of Berthelot. Analytical Chemistry, 54, 46–49.Google Scholar
  28. 28.
    Jiang, D. S., Long, S. Y., Huang, J., Xiao, H. Y., & Zhou, J. Y. (2005). Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal, 25, 15–23.CrossRefGoogle Scholar
  29. 29.
    Zhang, L., Zhu, X., Zheng, S., & Sun, H. (2009). Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase. Biochemical Engineering Journal, 46, 83–87.CrossRefGoogle Scholar
  30. 30.
    DeGroot, A. R., & Neufeld, R. J. (2001). Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes. Enzyme and Microbial Technology, 29, 321–327.CrossRefGoogle Scholar
  31. 31.
    Kumar, S., Dwevedi, A., & Kayastha, A. M. (2009). Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: analytical applications. Journal of Molecular Catalysis B: Enzymatic, 58, 138–145.CrossRefGoogle Scholar
  32. 32.
    Doğaç, Y. İ., Deveci, İ., Teke, M., & Mercimek, B. (2014). TiO2 beads and TiO2-chitosan beads for urease immobilization. Materials Science and Engineering: C, 42, 429–435.CrossRefGoogle Scholar
  33. 33.
    Wang, X., Zhu, K. X., & Zhou, H. M. (2011). Immobilization of glucose oxidase in alginate-chitosan microcapsules. International Journal of Molecular Sciences, 12, 3042–3054.CrossRefGoogle Scholar
  34. 34.
    Gabrovska, K., Georgieva, A., Godjevargova, T., Stoilova, O., & Manolova, N. (2007). Poly(acrylonitrile)chitosan composite membranes for urease immobilization. Journal of Biotechnology, 129, 674–680.CrossRefGoogle Scholar
  35. 35.
    Kara, F., Demirel, G., & Tumturk, H. (2006). Immobilization of urease by using chitosan–alginate and poly(acrylamide-co-acrylic acid)/κ-carrageenan supports. Bioprocess and Biosystems Engineering, 29, 207–211.CrossRefGoogle Scholar
  36. 36.
    Dickensheets, P. A., Chen, L. F., & Tsao, G. T. (1977). Characteristics of yeast invertase immobilized on porous cellulose beads. Biotechnology and Bioengineering, 19, 365–375.CrossRefGoogle Scholar
  37. 37.
    Bissett, F., & Sternberg, D. (1978). Immobilization of Aspergillus beta-glucosidase on chitosan. Applied and Environmental Microbiology, 35, 750–755.Google Scholar
  38. 38.
    Chellapandian, M., & Krishnan, M. R. V. (1998). Chitosan-poly (glycidyl methacrylate) copolymer for immobilization of urease. Process Biochemistry, 33, 595–600.CrossRefGoogle Scholar
  39. 39.
    Prakash, O., Puliga, S., & Upadhyay, L. S. B. (2007). Immobilization of watermelon (Citrullus vulgaris) urease in agarose gel for urea estimation. Biotechnology and Bioprocess Engineering, 12, 131–135.CrossRefGoogle Scholar
  40. 40.
    Elcin, A. E., & Elcin, Y. M. (2000). Polycation-coated polyanion microspheres of urease for urea hydrolysis. Artificial Cells Blood Substitutes, 28, 95–111.CrossRefGoogle Scholar
  41. 41.
    Yang, K., Xu, N. S., & Su, W. W. (2010). Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. Journal of Biotechnology, 148, 119–127.CrossRefGoogle Scholar
  42. 42.
    Baysal, S. H., & Karagöz, R. (2005). Preparation and characterization of κ‐carrageenan immobilized urease. Preparative Biochemistry & Biotechnology, 35, 135–143.CrossRefGoogle Scholar
  43. 43.
    Venton, D. L., & Gudipati, E. (1995). Entrapment of enzymes using organo-functionalized polysiloxane copolymers. BBA-Protein Structure and Molecular, 1250, 117–125.CrossRefGoogle Scholar
  44. 44.
    Shah, Y., Shah, D., Kothari, R. M., & Trivedi, B. M. (1994). Behavior of polyacrylamide encapsulated urease. Research and Industry, 39, 184–190.Google Scholar
  45. 45.
    Mulagalapalli, S., Kumar, S., Kalathur, R. C. R., & Kayastha, A. M. (2007). Immobilization of urease from pigeonpea (Cajanus cajan) on agar tablets and its application in urea assay. Applied Biochemistry and Biotechnology, 142, 291–297.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Science, Chemistry DepartmentMuğla Sıtkı Koçman UniversityMuğlaTurkey

Personalised recommendations