Advertisement

Applied Biochemistry and Biotechnology

, Volume 179, Issue 1, pp 16–32 | Cite as

Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization

  • Adriana P. Manfredi
  • José H. Pisa
  • Daniel H. Valdeón
  • Nora I. Perotti
  • María A. MartínezEmail author
Article

Abstract

A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn2+ and 5 mM Co2+ produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

Keywords

Bacillus sp. AR03 Factorial design Endoglucanase production Enzyme activity Biorefinery 

Notes

Acknowledgments

This study was supported by grants from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and CIUNT (Consejo de Investigaciones de la Universidad Nacional de Tucumán), Argentina.

Compliance with Ethical Standards

The manuscript does not contain human studies or experiments using animals.

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12010_2015_1976_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)

References

  1. 1.
    Linares-Pastén, J. A., Andersson, M., & Karlsson, E. N. (2014). Thermostable glycoside hydrolases in biorefinery technologies. Current Biotechnology, 3, 26–44. doi: 10.2174/22115501113026660041.CrossRefGoogle Scholar
  2. 2.
    Balasubramanian, N., & Simões, N. (2014). Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. International Journal of Biological Macromolecules, 67, 132–139. doi: 10.1016/j.ijbiomac.2014.03.014.CrossRefGoogle Scholar
  3. 3.
    Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K. M., Hughes, S. R., Christopher, L. P., & Sani, R. K. (2010). Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology, 101, 8798–8806. doi: 10.1016/j.biortech.2010.06.001.CrossRefGoogle Scholar
  4. 4.
    Wang, W., Yan, L., Cui, Z., Gao, Y., Wang, Y., & Jing, R. (2011). Characterization of a microbial consortium capable of degrading lignocellulose. Bioresource Technology, 102, 9321–9324. doi: 10.1016/j.biortech.2011.07.065.CrossRefGoogle Scholar
  5. 5.
    Tarayre, C., Brognaux, A., Bauwens, J., Brasseur, C., Mattéotti, C., Millet, C., Destain, J., Vandenbol, M., Portetelle, D., De Pauw, E., Eric, H., Francis, F., & Thonart, P. (2014). Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere. World Journal of Microbiology and Biotechnology, 30, 1655–1660. doi: 10.1007/s11274-013-1585-9.CrossRefGoogle Scholar
  6. 6.
    Sadhu, S., Saha, P., Mayilraj, S., & Maiti, T. K. (2011). Lactose-enhanced cellulase production by Microbacterium sp. isolated from fecal matter of zebra (Equus zebra). Current Microbiology, 62, 1050–1055. doi: 10.1007/s00284-010-9816-x.CrossRefGoogle Scholar
  7. 7.
    Sharma, A., & Satyanarayana, T. (2013). Comparative genomics of Bacillus species and its relevance in industrial microbiology. Genomics Insights, 6, 25–36. doi: 10.4137/GEI.S12732.Google Scholar
  8. 8.
    Kazemi, A., Rasoul-Amini, S., Shahbazi, M., Safari, A., & Ghasemi, Y. (2014). Isolation, identification, and media optimization of high-level cellulase production by Bacillus sp. BCCS A3, in a fermentation system using response surface methodology. Preparative Biochemistry and Biotechnology, 44, 107–118. doi: 10.1080/10826068.2013.792276.CrossRefGoogle Scholar
  9. 9.
    Maki, M. L., Idrees, A., Leung, K. T., & Qin, W. (2012). Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. Journal of Molecular Microbiology and Biotechnology, 22, 156–166. doi: 10.1159/000341107.CrossRefGoogle Scholar
  10. 10.
    Bano, S., Qader, S. A. U., Aman, A., Syed, M. N., & Durrani, K. (2013). High production of cellulose degrading endo-1,4-β-d-glucanase using bagasse as a substrate from Bacillus subtilis KIBGE HAS. Carbohydrate Polymers, 91, 300–304. doi: 10.1016/j.carbpol.2012.08.022.CrossRefGoogle Scholar
  11. 11.
    Nagar, S., Gupta, V. K., Kumar, D., Kumar, L., & Kuhad, R. C. (2010). Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. Journal of Industrial Microbiology and Biotechnology, 37, 71–83. doi: 10.1007/s10295-009-0650-8.CrossRefGoogle Scholar
  12. 12.
    Lee, E.-J., Lee, B.-H., Kim, B.-K., & Lee, J.-W. (2013). Enhanced production of carboxymethyl cellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Molecular Biology Reports, 40, 3609–3621. doi: 10.1007/s11033-012-2435-9.CrossRefGoogle Scholar
  13. 13.
    Sadhu, S., Saha, P., Sen, S. K., Mayilraj, S., & Maiti, T. K. (2013). Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springerplus, 2, 10. doi: 10.1186/2193-1801-2-10.CrossRefGoogle Scholar
  14. 14.
    Manfredi, A. P., Perotti, N. I., & Martínez, M. A. (2015). Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina. Journal of Basic Microbiology. doi: 10.1002/jobm.201500269.Google Scholar
  15. 15.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. doi: 10.1021/ac60147a030.CrossRefGoogle Scholar
  16. 16.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. doi: 10.1038/227680a0.CrossRefGoogle Scholar
  17. 17.
    Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43, 777–780.Google Scholar
  18. 18.
    Patrick, J. E., & Kearns, D. B. (2009). Laboratory strains of Bacillus subtilis do not exhibit swarming motility. Journal of Bacteriology, 191(22), 7129–7133. doi: 10.1128/JB.00905-09.CrossRefGoogle Scholar
  19. 19.
    Lee, Y.-J., Kim, B.-K., Lee, B.-H., Jo, K.-I., Lee, N.-K., Chung, C.-H., Lee, Y.-C., & Lee, J.-W. (2008). Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99, 378–386. doi: 10.1016/j.biortech.2006.12.013.CrossRefGoogle Scholar
  20. 20.
    Paudel, Y. P., & Qin, W. (2015). Characterization of novel cellulase-producing bacteria isolated from rotting wood samples. Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-015-1806-9.Google Scholar
  21. 21.
    Karaffa, L., Fekete, E., Gamauf, C., Szentirmai, A., Kubicek, C. P., & Seiboth, B. (2006). D-galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology, 152, 1507–1514. doi: 10.1099/mic.0.28719-0.CrossRefGoogle Scholar
  22. 22.
    Gautam, S. P., Bundela, P. S., Pandey, A. K., Khan, J., Awasthi, M. K., & Sarsaiya, S. (2011). Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology Research International, 2011, 810425. doi: 10.4061/2011/810425.CrossRefGoogle Scholar
  23. 23.
    Bajaj, B. K., Pangotra, H., Wani, M. A., Sharma, P., & Sharma, A. (2009). Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Indian Journal of Chemical Technology, 16, 382–387.Google Scholar
  24. 24.
    Zhang, G., Li, S., Xue, Y., Mao, L., & Ma, Y. (2012). Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles, 16, 35–43. doi: 10.1007/s00792-011-0403-2.CrossRefGoogle Scholar
  25. 25.
    Singh, J., Batra, N., & Sobti, R. C. (2004). Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. Journal of Industrial Microbiology and Biotechnology, 31, 51–56. doi: 10.1007/s10295-004-0114-0.CrossRefGoogle Scholar
  26. 26.
    Shoseyov, O., & Doi, R. H. (1990). Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proceedings of the National Academy of Sciences of the United States of America, 87, 2192–2195. doi: 10.1073/pnas.87.6.2192.CrossRefGoogle Scholar
  27. 27.
    Waeonukul, R., Kyu, K. L., Sakka, K., & Ratanakhanokchai, K. (2009). Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. Journal of Bioscience and Bioengineering, 107, 610–614. doi: 10.1016/j.jbiosc.2009.01.010.CrossRefGoogle Scholar
  28. 28.
    Gaur, R., & Tiwari, S. (2015). Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnology, 15, 19. doi: 10.1186/s12896-015-0129-9.CrossRefGoogle Scholar
  29. 29.
    Franco-Cirigliano, M. N., Rezende Carvalho, R., Pires Gravina-Oliveira, M., Freitas Pereira, P. H., Pires Do Nascimento, R., Pinto da Silva Bon, E., Macrae, A., & Reed Rodrigues Coelho, R. (2013). Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Research International, 2013, 1–9. doi: 10.1155/2013/584207.
  30. 30.
    Balasubramanian, N., Toubarro, D., Teixeira, M., & Simõs, N. (2012). Purification and biochemical characterization of a novel thermo-stable carboxymethyl cellulase from Azorean isolate Bacillus mycoides S122C. Applied Biochemistry and Biotechnology, 168, 2191–2204. doi: 10.1007/s12010-012-9929-8.CrossRefGoogle Scholar
  31. 31.
    Vijayaraghavan, P., & Vincent, S. G. P. (2012). Purification and characterization of carboxymethyl cellulase from Bacillus sp. isolated from a paddy field. Polish Journal of Microbiology, 61, 51–55.Google Scholar
  32. 32.
    Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme and Microbial Technology, 39, 1492–1498. doi: 10.1016/j.enzmictec.2006.03.040.CrossRefGoogle Scholar
  33. 33.
    Sinha, R., & Khare, S. K. (2014). Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Frontiers in Microbiology, 5, 1–6. doi: 10.3389/fmicb.2014.00165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Adriana P. Manfredi
    • 1
  • José H. Pisa
    • 1
  • Daniel H. Valdeón
    • 2
  • Nora I. Perotti
    • 1
    • 2
  • María A. Martínez
    • 1
    • 2
    Email author
  1. 1.PROIMI Planta Piloto de Procesos Industriales Microbiológicos. CONICETTucumánArgentina
  2. 2.Facultad de Ciencias Exactas y TecnologíaUniversidad Nacional de TucumánTucumánArgentina

Personalised recommendations