Skip to main content
Log in

Production, Purification, and Biochemical Characterization of Thermostable Metallo-Protease from Novel Bacillus alkalitelluris TWI3 Isolated from Tannery Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protease enzymes in tannery industries have enormous applications. Seeking a potential candidate for efficient protease production has emerged in recent years. In our study, we sought to isolate proteolytic bacteria from tannery waste dumping site in Tamilnadu, India. Novel proteolytic Bacillus alkalitelluris TWI3 was isolated and tested for protease production. Maximum protease production was achieved using lactose and skim milk as a carbon and nitrogen source, respectively, and optimum growth temperature was found to be 40 °C at pH 8. Protease enzyme was purified using ammonium sulfate precipitation method and anion exchange chromatography. Diethylaminoethanol (DEAE) column chromatography and Sephadex G-100 chromatography yielded an overall 4.92-fold and 7.19-fold purification, respectively. The 42.6-kDa TWI3 protease was characterized as alkaline metallo-protease and stable up to 60 °C and pH 10. Ca2+, Mn2+, and Mg2+ ions activated the protease, while Hg2+, Cu2+, Zn2+, and Fe2+ greatly inhibited it. Ethylenediaminetetraacetic acid (EDTA) inhibited TWI3 protease and was activated by Ca2+, which confirmed that TWI3 protease is a metallo-protease. Moreover, this protease is capable of dehairing goat skin and also removed several cloth stains, which makes it more suitable for various biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Asker, M. M. S., Mahmoud, M. G., Shebwy, K. E. L., & Aziz, M. S. A. (2013). Purification and character ization of two thermostab le protease fractions from Bacillus megaterium. Journal of Genetic Engineering and Biotechnology, 11(2), 103–109.

    Article  Google Scholar 

  2. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  3. Rai, S. K., & Mukherjee, A. K. (2010). Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochemical Engineering Journal, 48(2), 173–180.

    Article  CAS  Google Scholar 

  4. Belhoul, M., Jaouadi, N. Z., Rekik, H., Bejar, W., Touioui, S. B., Hmidi, M., Badis, A., Bejar, S., & Jaouadi, B. (2015). A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int. J. Biological Macromol., 79, 871–882.

    Article  Google Scholar 

  5. Joshi, S., & Satyanarayana, T. (2013). Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresource Technology, 131, 76–85.

    Article  CAS  Google Scholar 

  6. Sundararanjan, S., Kannan, C. N., & Chittibabu, S. (2011). Alkaline protease from Bacillus cereus VITSNO4: potential application as a dehairing agent. Journal of Bioscience and Bioengineering, 111, 128–133.

    Article  Google Scholar 

  7. Thanikaivelan, P., Rao, R. J., Nair, B. U., & Ramasami, T. (2004). Progress and recent trends in biotechnological methods for leather processing. Trends in Biotechnology, 22(4), 181–188.

    Article  CAS  Google Scholar 

  8. George, N., Chauhan, P. S., Kumar, V., Puri, N., & Gupta, N. (2014). Approach to eco-friendly leather: characteristics and application of an alkaline protease for chemical free dehairing of skins and hides at pilot scale. Journal of Cleaner Production, 79, 249–257.

    Article  CAS  Google Scholar 

  9. Smibert, R.M., & Krieg, N.R. (1994). Phenotypic characterization, in Methods for general and molecular bacteriology (Gerhardt P, Murray RGE, Wood WA, Krieg NR, eds), Washington, pp. 607–54.

  10. Gomori, G. (1995). Preparation of buffers for use in enzyme studies. In S. P. Colowick & N. O. Kaplan (Eds.), Methods in Enzymology (pp. 138–146). New York: Academic Press.

    Google Scholar 

  11. Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of proteinedye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  12. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  13. Kunitz, M. (1947). Crystalline soybean trypsin inhibitor: II. General properties. Gen. Physiol., 30, 291–310.

    Article  CAS  Google Scholar 

  14. Annamalai, N., Rajeswari, M. V., & Balasubramanian, T. (2014). Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food and Bioproducts Processing, 92, 335–342.

    Article  CAS  Google Scholar 

  15. Lee, J. C., Lee, G. S., Park, D. J., & Kim, C. J. (2008). Bacillus alkalitelluris sp. nov., an alkaliphilic bacterium isolated from sandy soil. International Journal of Systematic and Evolutionary Microbiology, 58, 2629–2634.

    Article  CAS  Google Scholar 

  16. Joo, H. S., Kumar, C. G., Park, G. C., Paik, S. R., & Chang, C. S. (2003). Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J.Appl. Microbiol, 95, 267–272.

    Article  CAS  Google Scholar 

  17. Patel, R. K., Dodia, M. S., Joshi, R. H., & Singh, S. P. (2006). Purification and characterization of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. Process Biochemistry, 41, 2002–2009.

    Article  CAS  Google Scholar 

  18. Deng, A., Wu, J., Zhang, Y., Zhang, G., & Wen, T. (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource Technology, 101, 7100–7106.

    Article  CAS  Google Scholar 

  19. VijayAnand, S., Hemapriya, J., Selvinb, J., & Kiran, S. (2009). Production and optimization of haloalkaliphilic protease by an extremophile Halobacterium sp. Js1, isolated from Thalassohaline environment. African Journal of Basic & Applied Sciences, 1(3–4), 49–54.

    Google Scholar 

  20. Ibrahim, A. S. S., & Al-Salamah, A. A. (2009). Optimization of media and cultivation conditions for alkaline pro tease production by alkaliphilic Bacillus halodurans. Research Journal of Microbiology, 4, 251–259.

    Article  CAS  Google Scholar 

  21. Zambare, V., Nilegaonkar, S., & Kanekar, P. (2011). A Novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. New Biotechnology, 28, 173–181.

    Article  CAS  Google Scholar 

  22. Kanekar, P. P., Nilegaonkar, S. S., Sarnaik, S. S., & Kelkar, A. S. (2002). Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresource Technol, 85, 87–93.

    Article  CAS  Google Scholar 

  23. Gouda, M. K. (2006). Optimization and purification of alkaline proteases produced by marine Bacillus sp. MIG newly isolated from Eastern Harbour of Alexandria. Polish Journal of Microbiology, 55, 119–126.

    CAS  Google Scholar 

  24. Mokashe, N., Chaudhari, A., & Patil, U. (2015). Optimal production and characterization of alkaline protease from newly isolated halotolerant Jeotgalicoccus sp. Biocatalysis and Agricultural Biotechnology., 4(2), 235–243.

    Article  Google Scholar 

  25. Olajuyigbe, F. M. (2013). Optimized production and properties of thermostable alkaline protease from Bacillus subtilis SHS-04 grown on groundnut (Arachis hypogaea) meal. Advances in Enzyme Research, 1(04), 112.

    Article  Google Scholar 

  26. Kumar, R. S., Ananthan, G., & Prabhu, A. S. (2014). Optimization of medium composition for alkaline protease production by Marinobacter sp. GA CAS9 using response surface methodology — A statistical approach. Biocatalysis and Agricultural Biotechnology, 3, 191–197.

    Article  Google Scholar 

  27. Shivanand, P., & Jayaraman, G. (2009). Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochemistry, 44, 1088–1094.

    Article  CAS  Google Scholar 

  28. Manikandan, M., Kanna, V., & Pasic, L. (2011). Extraction, purification and characterization of a protease from Micrococcus sp. VKMM 037. Environmental Technology, 32, 1487–1495.

    Article  CAS  Google Scholar 

  29. Doddapaneni, K. K., Tatineni, R., Vellanki, R. N., Rachcha, S., Anabrolu, N., Narakuti, V., & Mangaomoori, L. N. (2009). Purification and characterization of a solvent and detergent- stable novel protease from Bacillus cereus. Microbiological Research, 164, 383–390.

    Article  CAS  Google Scholar 

  30. Arulmani, M., Aparanjini, K., Vasanthi, K., Arumugam, P., Arivuchelvi, M., & Kalaichelvan, P. T. (2007). Purification and partial characterization of serine protease from thermostable alkaliphilic Bacillus laterosporus-AK1. World Journal of Microbiology and Biotechnology, 23, 475–481.

    Article  CAS  Google Scholar 

  31. Nilegaonkar, S. S., Zambare, V. P., Kanekar, P. P., Dhakephalkar, P. K., & Sarnaik, S. S. (2007). Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresource Technology, 98, 1238–1245.

    Article  CAS  Google Scholar 

  32. Uyar, F., Porsuk, I., Kizil, G., & Yilmaz, E. I. (2011). Optimal conditions for production of extracellular protease from newly isolated Bacillus cereus strain CA15. Eurasian Journal of Biosciences, 5, 1–9.

    Article  Google Scholar 

  33. Ahmetoglu, N., Bekler, F. M., Acer, O., & Guven, R. G. (2015). Production, purification and characterisation of thermostable metallo-protease from newly isolated. EurAsian Journal of BioSciences, 9, 1–11.

    Article  Google Scholar 

  34. Waghmare, S. R., Gurav, A., Mali, S., Nadaf, N. H., Jadhav, D. B., & Sonawane, K. D. (2015). Purification and characterization of novel organic solvent tolerant 98kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK. Protein Expression and Purification, 107, 1–6.

    Article  CAS  Google Scholar 

  35. Tiwary, E., & Gupta, R. (2010). Medium optimization for a novel 58 kDa dimeric ker- atinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology, 101, 6103–6110.

    Article  CAS  Google Scholar 

  36. Abraham, J., Gea, T., & Sánchez, A. (2014). Substitution of chemical dehairing by proteases from solid-state fermentation of hair wastes. Journal of Cleaner Production, 74, 191–198.

    Article  CAS  Google Scholar 

  37. Thanikaivelan, P., Rao, J. R., Nair, B. U., & Ramasami, T. (2002). Towards zero discharge tanning: a shift from chemical to biocatalytic leather processing. Environmental Science & Technology, 36, 4187–4194.

    Article  CAS  Google Scholar 

  38. Banerjee, U. C., Sani, R. K., Azmi, W., & Soni, R. (1999). Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochemistry, 35, 213–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, Tamilnadu, India, for providing laboratory facility to carry out the entire research. We also thankful to Mr. Narendrakumar for English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balayogan Sivasankari.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandharaj, M., Sivasankari, B., Siddharthan, N. et al. Production, Purification, and Biochemical Characterization of Thermostable Metallo-Protease from Novel Bacillus alkalitelluris TWI3 Isolated from Tannery Waste. Appl Biochem Biotechnol 178, 1666–1686 (2016). https://doi.org/10.1007/s12010-015-1974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1974-7

Keywords

Navigation