Skip to main content

Advertisement

Log in

Exploring the Effects of Subfreezing Temperature and Salt Concentration on Ice Growth Inhibition of Antarctic Gram-Negative Bacterium Marinomonas Primoryensis Using Coarse-Grained Simulation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work is to study the freezing process of water molecules surrounding Antarctic Gram-negative bacterium Marinomonas primoryensis antifreeze protein (MpAFP) and the MpAFP interactions to the surface of ice crystals under various marine environments (at different NaCl concentrations of 0.3, 0.6, and 0.8 mol/l). Our result indicates that activating temperature region of MpAFPs reduced as NaCl concentration increased. Specifically, MpAFP was activated and functioned at 0.6 mol/l with temperatures equal or larger 278 K, and at 0.8 mol/l with temperatures equal or larger 270 K. Additionally, MpAFP was inhibited by ice crystal network from 268 to 274 K and solid–liquid hybrid from 276 to 282 K at 0.3 mol/l concentration. Our results shed lights on structural dynamics of MpAFP among different marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nguyen, D. T., Colvin, M. E., Yeh, Y., Feeney, R. E., & Fink, W. H. (2002). The dynamics, structure, and conformational free energy of proline-containing antifreeze glycoprotein. Biophysical Journal, 82, 2892–2905.

    Article  CAS  Google Scholar 

  2. Yeh, Y., & Feeney, R. E. (1996). Antifreeze protein: structure and mechanisms of function. Chemical Reviews, 96, 601–618.

    Article  CAS  Google Scholar 

  3. Nguyen, H., Le, L., & Ho, T. B. (2014). Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation. The Journal of Chemical Physics, 140, 225101.

    Article  Google Scholar 

  4. Raymond, J. A. (2011). Algal ice-binding proteins change the structure of sea ice. Proceedings of the National Academy of Science of the United State of America, 108, E198.

    Article  CAS  Google Scholar 

  5. Janech, M. G., Krell, A., Mock, T., Kang, J. S., & Raymond, J. A. (2006). Ice-binding proteins from sea ice diatoms (Bacillariophyceae). Journal of Phycology, 42, 410–416.

    Article  CAS  Google Scholar 

  6. DeVries, A. L., Komatsu, S. K., & Feeney, R. E. (1970). Chemical and physical properties of freezing point depressing glycoproteins from Antarctic fishes. The Journal of Biological Chemistry, 245, 2901–2908.

    CAS  Google Scholar 

  7. Davies, P. L., Hew, C. L., & Fletcher, G. L. (1980). Fish antifreeze proteins: physiology and evolutionary biology. Canadian Journal of Zoology, 66, 2611–2617.

    Article  Google Scholar 

  8. Marshall, C. B., Fletcher, G. L., & Davies, P. L. (2004). Hyperactive antifreeze protein in a fish. Nature, 429, 153.

    Article  CAS  Google Scholar 

  9. Worrall, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., Telford, J., Holt, C., & Bowles, D. (1998). A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science, 282, 115–117.

    Article  CAS  Google Scholar 

  10. Atici, O., & Nalbantoglu, B. (2003). Antifreeze proteins in higher plants. Phytochemistry, 64, 1187–1196.

    Article  CAS  Google Scholar 

  11. Griffith, M., & Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 9, 399–405.

    Article  CAS  Google Scholar 

  12. Tomchaney, A. P., Morris, J. P., Kang, S. H., & Duman, J. G. (1982). Purification, composition, and physical properties of thermal hysteresis “antifreeze” protein from larvae of the beetle, Tenebrio molitor. Biochemistry, 21, 716–721.

    Article  CAS  Google Scholar 

  13. Hew, C. L., Kao, M. H., So, Y.-P., & Lim, K.-P. (1983). Presence of cystine-containing antifreeze proteins in the spruce budworm, Choristoneura fumiferana. Canadian Journal of Zoology, 61, 2324–2328.

    Article  CAS  Google Scholar 

  14. Schneppenheim, R., & Theede, H. (1980). Isolation and characterization of freezing-point depressing peptides from larvae of Tenebrio molitor. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 67, 561–568.

    Article  Google Scholar 

  15. Duman, J. G., Bennett, V., Sformo, T., Hochstrasser, R., & Barnes, B. M. (2004). Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology, 50, 259–266.

    Article  CAS  Google Scholar 

  16. Robinson, C. H. (2001). Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 151, 341–353.

    Article  CAS  Google Scholar 

  17. Gilbert, J. A., Hill, P. J., Dodd, C. E., & Laybourn-Parry, J. (2004). Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology, 150, 171–180.

    Article  CAS  Google Scholar 

  18. Muryoi, N., Sato, M., Kaneko, S., Kawahara, H., Obata, H., Yaish, M. W. F., Yeh, Y., & Feeney, R. E. (1996). Antifreeze proteins: structures and mechanisms of function. Chemical Reviews, 96, 601–618.

    Article  Google Scholar 

  19. Meister, K., Ebbinghaus, S., Xu, Y., John, G. D., DeVries, A., Gruebele, M., David, M. L., & Havenith, M. (2012). Long-range protein-water dynamics in hyperactive insect antifreeze proteins. Proceedings of the National Academy of Science of the United State of America, 110, 1617–1622.

    Article  Google Scholar 

  20. Jorov, A., Zhorov, B. S., & Yang, D. S. (2004). Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science, 13, 1524–1537.

    Article  CAS  Google Scholar 

  21. Braslavsky, I., & Drori, R. (2013). LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations. Journal of Visualized Experiments, 72, e4189.

    Google Scholar 

  22. Chattopadhyay, M. K. (2007). Antifreeze proteins of bacteria. Resonance, 12, 25–30.

    Article  CAS  Google Scholar 

  23. John, G. D., & Olsen, T. M. (1993). Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology, 30, 322–328.

    Article  Google Scholar 

  24. Fletcher, G. L., Hew, C. L., & Davies, P. L. (2001). Antifreeze proteins of teleost fishes. Annual Review Physiology, 63, 359–390.

    Article  CAS  Google Scholar 

  25. Davies, P. L., Baardsnes, J., Kuiper, M. J., & Walker, V. K. (2002). Structure and function of antifreeze proteins. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 927–935.

    Article  CAS  Google Scholar 

  26. Christopher, P. G., Robert, L. C., & Peter, L. D. (2011). Anchored clathrate waters bind antifreeze proteins to ice. Proceedings of the National Academy of Science of the United State of America, 108, 7363–7367.

    Article  Google Scholar 

  27. Devries, A. L., & Lin, Y. (1977). Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochimica et Biophysica Acta, 495, 388–392.

    Article  CAS  Google Scholar 

  28. Chao, H., Houston, M. E., Jr., Hodges, R. S., Kay, C. M., Sykes, B. D., Loewen, M. C., Davies, P. L., & Sönnichsen, F. D. (1997). A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry, 36, 14652–14660.

    Article  CAS  Google Scholar 

  29. Baardsnes, J., Kondejewski, L. H., Hodges, R. S., Chao, H., Kay, C., & Davies, P. L. (1999). New ice-binding face for type I antifreeze protein. FEBS Letters, 463, 87–91.

    Article  CAS  Google Scholar 

  30. Nutt, D. R., & Smith, J. C. (2008). Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Journal of the American Chemical Society, 130, 13066–13073.

    Article  CAS  Google Scholar 

  31. Gallagher, K. R., & Sharp, K. A. (2003). Analysis of thermal hysteresis protein hydration using the random network model. Biophysical Chemistry, 105, 195–209.

    Article  CAS  Google Scholar 

  32. Smolin, N., & Daggett, V. (2008). Formation of ice-like water structure on the surface of an antifreeze protein. The Journal of Physical Chemistry B, 112, 6193–6202.

    Article  CAS  Google Scholar 

  33. Wierzbicki, A., Dalal, P., Cheatham, T. E., 3rd, Knickelbein, J. E., Haymet, A. D., & Madura, J. D. (2007). Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Biophysical Journal, 93, 1442–1451.

    Article  CAS  Google Scholar 

  34. Yang, C., & Sharp, K. A. (2004). The mechanism of the type III antifreeze protein action: a computational study. Biophysical Chemistry, 109, 137–148.

    Article  CAS  Google Scholar 

  35. Yang, C., & Sharp, K. A. (2005). Hydrophobic tendency of polar group hydration as a major force in type I antifreeze protein recognition. Proteins, 59, 266–274.

    Article  CAS  Google Scholar 

  36. Garnham, C. P., Campbell, R. L., & Davies, P. L. (2011). Anchored clathrate waters bind antifreeze proteins to ice. Proceedings of the National Academy of Science of the United State of America, 108, 7363–7367.

    Article  CAS  Google Scholar 

  37. Guo, S., Garnham, C. P., Partha, S. K., Campbell, R. L., Allingham, J. S., & Davies, P. L. (2013). Role of Ca2+ in folding the tandem β-sandwich extender domains of a bacterial ice-binding adhesion. FEBS Journal, 280, 5919–5932.

    Article  CAS  Google Scholar 

  38. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD-visual molecular dynamics. Molecular Graphics, 14, 33–38.

    Article  CAS  Google Scholar 

  39. Siewert, J. M., Risselada, H. J., Yefimov, S., Tieleman, D. P., & Alex, H. D. (2007). The MARTINI force field: coarge grained model for biomolecular simulation. The Journal of Physical Chemistry B, 111, 7812–7824.

    Article  Google Scholar 

  40. Le, L., & Molinero, V. (2011). Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water. The Journal of Physical Chemistry. A, 115, 5900–5907.

    Article  CAS  Google Scholar 

  41. Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  Google Scholar 

  42. Darden, T., York, D., & Pedersen, J. (1993). Particle mesh Ewald: an Nlog (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  43. Yesylevskyy, S. O., Schäfer, L. V., Sengupta, D., & Marrink, S. J. (2010). Polarizable water model for the coarse-grained MARTINI force field. PLoS Computational Biology, 6, e1000810.

    Article  Google Scholar 

  44. Kar, R. K., & Bhunia, A. (2015). Biophysical and biochemical aspects of antifreeze proteins: using computational tools to extract atomistic information. Progress in Biophysics and Molecular Biology, 119, 194–204.

    Article  CAS  Google Scholar 

  45. Kar, R. K., & Bhunia, A. (2015). Will it be beneficial to simulate the antifreeze proteins at ice freezing condition or at lower temperature? The Journal of Physical Chemistry B, 119, 11485–11495.

    Article  CAS  Google Scholar 

  46. Sanz, E., Vega, C., Abascal, J. L. F., & MacDowell, L. G. (2004). Phase diagram of water from computer simulation. Physical Review Letters, 92, 255701.

    Article  CAS  Google Scholar 

  47. Kofke, D. A., & Post, A. J. (1993). Hard particles in narrow pores. Transfer-matrix solution and the periodic narrow box. The Journal of Chemical Physics, 98, 1331–1336.

    Google Scholar 

  48. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.

    Article  CAS  Google Scholar 

  49. Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.

    Article  CAS  Google Scholar 

  50. Hockney, R. W., Goel, S. P., & Eastwood, J. (1974). Quit high resolution computer models of plasma. Journal of Computational Physics, 14, 148–158.

    Article  Google Scholar 

  51. Mu, Y., Nguyen, P. H., & Stock, G. (2005). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins, 58, 45–52.

    Article  CAS  Google Scholar 

  52. Nguyen, H., Van, T. D., & Le, L. (2015). Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp. Chemical Physics Letters, 638, 137–143.

    Article  CAS  Google Scholar 

  53. Wang, Y., Teitel, S., & Dellago, C. (2005). Melting of icosahedral gold nanoclusters from molecular dynamics simulations. The Journal of Chemical Physics, 122, 214722.

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the Department of the Navy, Office of Naval Research under grant number N62909-14-1-N234. The computing resources and support provided by Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hung Nguyen or Ly Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H., Dac Van, T., Tran, N. et al. Exploring the Effects of Subfreezing Temperature and Salt Concentration on Ice Growth Inhibition of Antarctic Gram-Negative Bacterium Marinomonas Primoryensis Using Coarse-Grained Simulation. Appl Biochem Biotechnol 178, 1534–1545 (2016). https://doi.org/10.1007/s12010-015-1966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1966-7

Keywords

Navigation