Skip to main content
Log in

Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, an antibacterial electrospun nanofibers for wound dressing application was successfully prepared from polyvinyl alcohol (PVA), Pluronic F127 (Plur), polyethyleneimine (PEI) blend solution with titanium dioxide nanoparticles (TiO2 NPs). PVA–Plur–PEI nanofibers containing various ratios of TiO2 NPs were obtained. The formation and presence of TiO2 in the PVA–Plu–PEI/ TiO2 composite was confirmed by X-ray diffraction (XRD). Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), mechanical measurement, and antibacterial activity were undertaken in order to characterize the PVA–Plur–PEI/TiO2 nanofiber morphology and properties. The PVA–Plu–PEI nanofibers had a mean diameter of 220 nm, and PVA–Plur–PEI/TiO2 nanofibers had 255 nm. Moreover, the antimicrobial properties of the composite were studied by zone inhibition against Gram-negative bacteria, and the result indicates high antibacterial activity. Results of this antibacterial testing suggest that PVA–Plur–PEI/TiO2 nanofiber may be effective in topical antibacterial treatment in wound care; thus, they are very promising in the application of wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ramakrishna, S., Fujihara, K., Teo, W., Lim, T., & Ma, Z. (2005). An introduction to electrospinning and nanofibers (pp. 135–137). Singapore: World Scientific Publishing Co. Pte, Ltd.

    Book  Google Scholar 

  2. Wendorff, J. H., Agarwal, S., & Greiner, A. (2012). Electrospinning: materials, in: processing, and applications. Germany: Wiley-VCH.

    Book  Google Scholar 

  3. Fouda, M. G., El-Aassar, M. R., & Al-Deyab, S. S. (2013). Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydrate Polymers, 92, 1012–1017.

    Article  CAS  Google Scholar 

  4. Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Nanotechnology, 46, 5670–5703.

    CAS  Google Scholar 

  5. Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering, 12(5), 1197–1211.

    Article  CAS  Google Scholar 

  6. Roshmi, T., Soumya, K. R., Jyothis, M., & Radhakrishnan, E. K. (2015). Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied Biochemistry and Biotechnology, 176(8), 2213–2224.

    Article  Google Scholar 

  7. Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24, 2077–2082.

    Article  CAS  Google Scholar 

  8. Agarwal, S., Wendorff, J. H., & Greiner, A. (2010). Chemistry on electrospun polymeric nanofibers: merely routine chemistry or a real challenge. Macromolecular Rapid Communications, 31, 1317–1331.

    Article  CAS  Google Scholar 

  9. Nitanan, T., Akkaramongkolporn, P., Rojanarata, T., Ngawhirunpat, T., & Opanasopit, P. (2013). Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. International Journal of Pharmaceutics, 448, 71–78.

    Article  CAS  Google Scholar 

  10. Unnithana, A. R., Barakat, N. A. M., Pichiahd, P. B. T., Gnanasekarane, G., Nirmalab, R., Chad, Y.-S., Junge, C. H., El-Newehy, M., & Kim, H. Y. (2012). Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydrate Polymers, 90, 1786–1793.

    Article  Google Scholar 

  11. Karami, Z., Rezaeian, I., Zahedi, P., & Abdollahi, M. (2013). Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. Applied Polymer Science, 129, 756–766.

    Article  CAS  Google Scholar 

  12. Lin, J., Li, C., Zhao, Y., Hu, J., & Zhang, L. M. (2012). Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Applied Materials & Interfaces, 4, 1050–1057.

    Article  CAS  Google Scholar 

  13. Merrell, J. G., McLaughlin, S. W., Tie, L., Laurencin, C. T., Chen, A. F., & Nair, L. S. (2009). Curcumin loaded poly(ε-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clinical and Experimental Pharmacology and Physiology, 36, 1149–1156.

    Article  CAS  Google Scholar 

  14. Jin, G., Prabhakaran, M. P., Kai Dan Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34, 724–734.

    Article  CAS  Google Scholar 

  15. Son, B., Yeom, B.-Y., Song, S. H., Lee, C.-S., & Hwang, T. S. (2009). Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. Applied Polymer Science, 111, 2892–2899.

    Article  CAS  Google Scholar 

  16. Asran, A. S., Razghandi, K., Aggarwal, N., Michler, G. H., & Groth, T. (2010). Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules, 11, 3413–3421.

    Article  CAS  Google Scholar 

  17. Abdelrahman, M. A., Samuel, M. H., & Orlando, J. R. (2014). Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate Polymers, 100, 166–178.

    Article  Google Scholar 

  18. Sarhan, W. A., & Azzazy, M. E. (2015). High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydrate Polymers, 122, 135–143.

    Article  CAS  Google Scholar 

  19. Moreno, I., González-González, V., & Romero-García, J. (2011). Control release of lactate dehydrogenase encapsulated in poly (vinyl alcohol) nanofibers via electrospinning. European Polymer Journal, 47, 1264–1272.

    Article  CAS  Google Scholar 

  20. Zulkifli, F. H., Shahitha, F., Yusuff, M. M., Hamidon, N. N., & Chahal, S. (2013). Cross-linking effect on electrospun hydroxyethyl cellulose/poly(vinyl alcohol) nanofibrous scaffolds. Procedia Engineering, 53, 689–695.

    Article  CAS  Google Scholar 

  21. Schmolka, I. R. (1972). Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. Journal of Biomedical Materials Research Part A, 6, 571–582.

    Article  CAS  Google Scholar 

  22. Gombotz, W. R., & Pettit, D. K. (1995). Biodegradable polymers for protein and peptide drug delivery. Journal of Bioconjugate Chem, 6, 332–351.

    Article  CAS  Google Scholar 

  23. Jushasz, J., Lenaerts, V., Taymond, P., & Ong, H. (1989). Diffusion of rat atrial natriuretic factor in thermoreversible poloxamer gels. Biomaterials, 10, 265–268.

    Article  Google Scholar 

  24. Viegas, T.X., Reeve, L.E., and Levinson, R.S. (1994). U.S. Patent, 5,306,501.

  25. Viegas, T.X., Reeve, L.E., & Henry, R.L. (1994). U.S. patent, 5,346,703,.

  26. El-Aassar, M. R. (2013). Functionalized electrospun nanofibers from poly (AN-co-MMA) for enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 85, 140–148.

    Article  Google Scholar 

  27. El-Aassar, M. R., Al-Deyab, S. S., & Kenawy, E. (2013). Covalent immobilization of β-galactosidase onto electrospun nanofibers of poly (AN-co-MMA) copolymer. Applied Polymer Science, 127, 1873–1884.

    Article  CAS  Google Scholar 

  28. Wist, J., Sanabria, J., Dierolf, C., Torres, W., & Pulgarin, C. (2004). Evaluation of photocatalytic disinfection of crude water for drinking water production. Journal of Photochemistry and Photobiology A: Chemistry, 147, 241–246.

    Article  Google Scholar 

  29. Grassian, V. H., Oshaughnessy, P. T., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115, 397–402.

    Article  CAS  Google Scholar 

  30. Borenfreund, E., & Puerner, J. A. (1985). Toxicity determinedin vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24, 119–124.

    Article  CAS  Google Scholar 

  31. Bechert, T., Steinrücke, P., & Guggenbichler, J. P. (2000). A new method for screening anti-infective biomaterials. Journal of Natural Medicines, 6, 1053–1056.

    Article  CAS  Google Scholar 

  32. Kitkulnumchai, Y., Ajavakom, A., & Sukwattanasinitt, M. (2008). Treatment of oxidized cellulose fabric with chitosan and its surface activity towards anionic reactive dyes. Cellulose, 15, 599–608.

    Article  CAS  Google Scholar 

  33. Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Journal of Natural Sciences, 42, 357–361.

    Google Scholar 

  34. Shalumon, K. T., Binulal, N. S., Selvamurugan, N., Nair, S. V., Menon, D., & Furuike, T. (2009). Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers, 77, 863–869.

    Article  CAS  Google Scholar 

  35. Cetiner, S., Kalaoglu, F., Karakas, H., & Sarac, A. S. (2010). Electrospun nanofibers of polypyrrole-poly(acrylonitrile-co-vinyl acetate). Textile Research Journal, 80, 1784–1792.

    Article  CAS  Google Scholar 

  36. Hsu, S. H., Chou, C. W., & Tseng, S. M. (2004). Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromolecular Materials and Engineering, 289, 1096–1101.

    Article  CAS  Google Scholar 

  37. Shi, H., Magaye, R., Castranovaand, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fiber Toxicology, 10, 15.

    Article  CAS  Google Scholar 

  38. Lee, S., Pereira, B. P., & Yusof, N. (2009). Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration. Acta Biomaterialia, 5, 1919–1925.

    Article  CAS  Google Scholar 

  39. Chuang, W., Young, T., Yao, C., & Chiu, W. (1999). Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials, 20, 1479–1487.

    Article  CAS  Google Scholar 

  40. Ramovatar, M., Kumari, K., & Paulraj, R. (2015). Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat. Applied Biochemistry and Biotechnology, 175(2), 825–840.

    Article  Google Scholar 

  41. Shah, M. S. A., Nag, M., Kalagara, T., Singh, S., & Manorama, S. V. (2008). Silver on PEG-PU TiO2 polymer nanocomposite films; an excellent system for antibacterial applications. Materials Chemistry, 20, 2455–2460.

    Article  CAS  Google Scholar 

  42. Weir, E., Lawlor, A., Whelan, A., & Regan, F. (2008). The use of nanoparticles in anti-microbial materials and their characterization. Analyst, 133, 835–845.

    Article  CAS  Google Scholar 

  43. Roy, S. C., Varghese, O. K., Paulose, M., & Grimes, C. A. (2010). Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 4, 1259–1278.

    Article  CAS  Google Scholar 

  44. Vincent, M. G., John, P. N., Narayanan, P. M., Vani, C., & Sevanan, M. (2014). In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. Applied Pharmaceutical Science, 4, 41–46.

    CAS  Google Scholar 

  45. Santhoshkumar, T., Rahuman, A., Jayaseelan, G., & Rajakumar, G. (2015). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968–976.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by postdoc Programs Foundation of Ministry of Education of China Grant No is (2015 M57145)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. El-Aassar or G. F. El fawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Aassar, M.R., El fawal, G.F., El-Deeb, N.M. et al. Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Appl Biochem Biotechnol 178, 1488–1502 (2016). https://doi.org/10.1007/s12010-015-1962-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1962-y

Keywords

Navigation