Skip to main content

Advertisement

Log in

Roles of Triolein and Lipolytic Protein in the Pathogenesis and Survival of Mycobacterium tuberculosis: a Novel Therapeutic Approach

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Discovery of novel secreted enzymes and proteins in Mycobacterium tuberculosis (M. tuberculosis) are imperative to understanding the pathogenic system for pathogenesis requires attention. Till date, the groups of these secreted enzymes are not meaningfully characterized in terms of M. tuberculosis. In this way, cutinase, a small lipolytic protein, exists in both bacteria and fungi as well which have a potential catalytic activity. During our search, we have found a few genes of M. tuberculosis demonstrating a same significant lipase action as fungi Fusarium solani cutinase contain. Genome sequencing of M. tuberculosis uncover a lot of proteins, wherein (Rv1758, Rv1984c, Rv2301, Rv3451, Rv3452, Rv3724A, Rv3724B, and Rv3802c) genes have been noted which are exhibiting a cutinase-like activity and closely homologous to that of F. solani cutinase and having the ability to hydrolyze model substrates including p-nitrophenyl butyrate (p-PNB), cutin, triacylglycerols (TAGs), and triolein (TO), yet their biological significance in pathogenesis stays subtle and uncharacterized. In a basic perspective, the measure of cutinase expressed by M. tuberculosis and part of these small lipolytic enzymes in the pathologic discipline require thorough characterization. So, through focusing on cutinase-encoding genes in M. tuberculosis and their active catalytic motif could help to build up a novel therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

M. tuberculosis :

Mycobacterium tuberculosis

F. solani :

Fusarium solani

T. fusca :

Thermomonospora fusca

P. spp.:

Pseudomonas spp.

Culp:

Cutinase-like proteins

Cut:

Cutinase

TO:

Triolein

LDs:

Lipid droplets

TAGs:

Triacylglycerols

References

  1. Mukhopadhyay, S., Nair, S., & Ghosh, S. (2012). Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiology Review, 36, 463–485.

    Article  CAS  Google Scholar 

  2. TB India .Revised National TB control Programme (2013) Annual report, Central TB Division, govt. of India.

  3. Global tuberculosis report 2014. http://www.who.int/tb/publications/global_report/en/

  4. Kumari, P., & Meena, L. S. (2014). Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Applied Biochemistry and Biotechnology, 174, 2663–2673.

    Article  CAS  Google Scholar 

  5. Kandola, P., & Meena, L. S. (2014). Extra pulmonary tuberculosis: overview, manifestations, diagnostic and treatment techniques. Advance Material Reviews, 1, 13–19.

    Google Scholar 

  6. Wilson, J. W., Schurr, M. J., LeBlanc, C. L., Ramamurthy, R., Buchanan, K. L., & Nickerson, C. A. (2002). Mechanisms of bacterial pathogenicity. Postgraduate Medical Journal, 78, 216–224.

    Article  CAS  Google Scholar 

  7. Pasula, R., Wisniowski, P., & Martin, W. J. (2002) Fibronectin Facilitates Mycobacterium tuberculosis Attachment to Murine Alveolar Macrophages. Infection and immunity, 70, 1287–1292.

  8. Andersen, A. B., Andersen, P., & Ljungqvist, L. (1992). Structure and function of a 40,000-molecular-weight protein antigen of Mycobacterium tuberculosis. Infection and Immunity, 60, 2317–2323.

    CAS  Google Scholar 

  9. Koul, A., Herget, T., Klebl, B., & Ullrich. (2004). Interplay between mycobacteria and host signalling pathways. Nature Reviews Microbiology, 2, 189–202.

    Article  CAS  Google Scholar 

  10. Maarten, R. E., & Jacob, V. (2000). Fusarium solani pisi cutinase. Biochimie, 82, 1015–1021.

    Article  Google Scholar 

  11. Nyyssola, A., Pihlajaniemi, V., Jarvinen, R., Mikander, S., Kontkanen, H., Kruus, K., Kallio, H., & Buchert, J. (2013). Screening of microbes for novel acidic cutinases and cloning and expression of an acidic cutinase from Aspergillus niger CBS 513.88. Enzyme Microbiol Technology, 52, 272–278.

    Article  CAS  Google Scholar 

  12. Fett, W. F., Gerard, H. C., Moreau, R. A., Osman, S. F., & Jones, L. E. (1992). Cutinase production by Streptomyces spp. Current Microbiology, 25, 165–171.

    Article  CAS  Google Scholar 

  13. Anja, RA. and Heise, PA. (2010) Oxireductases in the enzymatic synthesis of water-soluble conducting polymers (Ochoteco E and Mecerreyes D. eds). Technology & Engineering pp. 150. Springer.

  14. Fett, W. F., Wijey, C., Moreau, R. A., & Osman, S. F. (1999). Production of cutinase by Thermomonospora fusca ATCC 27730. Journal of Applied Microbiology, 86, 561–568.

    Article  CAS  Google Scholar 

  15. Sebastian, J., & Chandra, A. K. (1987). Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere. Journal of Bacteriology, 169, 131–136.

    CAS  Google Scholar 

  16. Meena, L. S., & Kolattukudy, P. E. (2013). Expression and characterization of Rv0447c product as the methyltransferase involved in tuberculostearic acid biosynthesis in Mycobacterium tuberculosis. Biotechnology and Applied Biochemistry, 60, 412–416.

    Article  CAS  Google Scholar 

  17. Meena, L. S. (2015). An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37Rv and their potential as new drug targets. Biotechnology and Applied Biochemistry, 62, 145–153. doi:10.1002/bab.1266.

    Article  CAS  Google Scholar 

  18. Meena, L. S., & Meena, J. (2015). Cloning and characterization of a novel PE_PGRS60 protein (Rv3652) of Mycobacterium tuberculosis H37Rv, exhibiting fibronectin binding property. Biotechnology and Applied Biochemistry. doi:10.1002/bab.1411.

    Google Scholar 

  19. Sebastian, J., & Kolattukudy, P. E. (1988). Purification and characterization of cutinase from a fluorescent Pseudomonas putida bacterial strain isolated from phyllosphere. Archives of Biochemistry and Biophysics, 263, 77–85.

    Article  CAS  Google Scholar 

  20. Fett, W. F., Gerard, H. C., Moreau, R. A., Osman, S. F., & Jones, L. E. (1992). Screening of non-filamentous bacteria for production of cutin-degrading enzymes. Applied and Environmental Microbiology, 58, 2123–2130.

    CAS  Google Scholar 

  21. Rajni, Rao, N., & Meena, L. S. (2011). Biosynthesis and virulent behavior of lipids produced by Mycobacterium tuberculosis: lam and cord factor: an overview. Biotechnology Research International, 2011, 1–7.

    Article  Google Scholar 

  22. Longhi, S., Zjzek, M. C., Lamizin, V., Icolas, A. N., & Cambillau, C. (1997). Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereo chemical analysis”. Journal of Molecular Biology, 268, 779–799.

    Article  CAS  Google Scholar 

  23. Melo, E. P., Aires-Barros, M. R., & Cabral, J. M. S. (1995). Triglyceride hydrolysis and stability of a recombinant cutinase from Fusarium solani in AOT iso-octane reversed micelles. Applied Biochemistry and Biotechnology, 50, 45–56.

    Article  CAS  Google Scholar 

  24. Purdy, R. E., & Kolattukudy, P. E. (1975). Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry, 14, 2824–2831.

    Article  CAS  Google Scholar 

  25. Purdy, R. E., & Kolattukudy, P. E. (1975). Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry, 13, 2832–2840.

    Article  Google Scholar 

  26. Lin, T. S., & Kolattukudy, P. E. (1980). Isolation and characterization of a cuticular polyester (cutin) hydrolyzing enzyme from phytopathogenic fungi. Physiological Plant Pathology, 17, 1–4.

    Article  CAS  Google Scholar 

  27. Antzig, A. H., Zuckerman, S. H., & Andonov-Roland, M. M. (1986). Isolation of a Fusarium solani mutant reduced in cutinase activity and virulence. Journal of Bacteriology, 168, 911–916.

    Google Scholar 

  28. Murphy, C. A., Cameron, J. A., Huang, S. J., & Vinopal, R. T. (1996). Fusarium polycaprolactone depolymerase is cutinase. Applied and Environmental Microbiology, 62, 2456–2460.

    Google Scholar 

  29. Carvalho, C. M. L., Aires-Barros, M. R., & Cabral, J. M. S. (1998). Cutinase structure, function and biocatalytic applications. Process Biotechnology, 1, 0717–3458.

    Google Scholar 

  30. Soliday, C. L., & Kolattukudy, P. E. (1983). Primary structure of the active site region of fungal cutinase, an enzyme involved in phytopathogenesis. Biochemical and Biophysical Research Communications, 114, 1017–1022.

    Article  CAS  Google Scholar 

  31. Deb, C., Daniel, J., Tatiana, D. S., Abomoelak, B., Dubey, V. S., & Kolattukudy, P. E. (2006). A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. Journal of Biological Chemistry, 281, 3866–3875.

    Article  CAS  Google Scholar 

  32. Vir, P., Gupta, D., Agarwal, R., & Verma, I. (2014). Interaction of alveolar epithelial cells with CFP21, a mycobacterial cutinase-like enzyme. Molecular and Cellular Biochemistry, 396, 187–199.

    Article  CAS  Google Scholar 

  33. Verma, D. Das, L. Gambhir, V. Dikshit, KL. and Varshney, GC (2015) Heterogeneity among homologs of cutinase-like protein Cut5 in Mycobacteria. PLoS ONE. 10, doi:10.1371/journal.pone.0133186.

  34. West, N. P., Frances, M. E., Chow, E. J., Randall, J., & Britton, W. J. (2009). Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification. FASEB Journal, 23, 1694–1704.

    Article  CAS  Google Scholar 

  35. Parker, S. K., Curtin, K. M., & Vasil, M. L. (2007). Purification and characterization of mycobacterial phospholipase a: an activity associated with mycobacterial cutinase. Journal of Bacteriology, 189, 4153–4160.

    Article  CAS  Google Scholar 

  36. Meena, L. S., Chopra, P., Vishwakarma, R. A., & Singh, Y. (2013). Biochemical characterization of an S-adenosyl-L-methionine dependent methyltransferase of Mycobacterium tuberculosis. Biological Chemistry, 394, 871–877.

    Article  CAS  Google Scholar 

  37. West, N. P., Wozniak, T. M., Valenzuela, J., Feng, C. G., Sher, A., Ribeiro, J. M., & Britton, W. J. (2008). Immunological diversity within a family of cutinase-like proteins of Mycobacterium tuberculosis. Vaccine, 26, 3853–3859.

    Article  CAS  Google Scholar 

  38. Willcocks, S., & Wren, B. W. (2014). Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence. Future Microbiology, 9, 657–668.

    Article  CAS  Google Scholar 

  39. Sultana, R., Tanneeru, K., & Guruprasad, L. (2011). The PE-PPE domain in mycobacterium reveals a serine a/b hydrolase fold and function: an in-silico analysis. PLoS ONE, 6, 1–7.

    Article  Google Scholar 

  40. Lopes, D. B., Fraga, L. P., Fleuri, L. F., & Macedo, G. A. (2011). Lipase and esterase—to what extent can this classification be applied accurately. Ciencia e Tecnologia de Alimentos Campinas, 31, 608–613.

    Article  Google Scholar 

  41. Flipsen, J. A., Van der Hijden, H. T., Egmond, M. R., & Verheij, H. M. (1996). Action of cutinase at the triolein-water interface. Characterisation of interfacial effects during lipid hydrolysis using the oil-drop tensiometer as a tool to lipase kinetics. Chemistry and Physics of Lipids, 84, 105–115.

    Article  CAS  Google Scholar 

  42. Ashton Acton, Q. (2011) Advances in Mycobacterium research and application: scholarly editions, pp. 139. Atlanta, Georgia.

  43. Egmond, M. R., & Vlieg, J. (2000). Fusarium solani pisi cutinase. Biochimie, 82, 1015–1021.

    Article  CAS  Google Scholar 

  44. Weldingh, K., Rosenkrands, I., Jacobsen, S., Rasmussen, P. B., Elhay, M. J., & Andersen, P. (1998). Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infection and Immunity, 66, 3492–3500.

    CAS  Google Scholar 

  45. Dedieu, L., Serveau-Avesque, C., & Canaan, S. (2013). Identification of residues involved in substrate specificity and cytotoxicity of two closely related cutinases from Mycobacterium tuberculosis. PLoS One, 8, 1–10.

    Article  Google Scholar 

  46. Delorme, V., Diomande, S. V., Dedieu, L., Cavalier, J. F., Carriere, F., Kremer, L., Leclaire, J., Fotiadu, F., & Canaan, S. (2012). MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth. Plos One, 7, 1–9.

    Google Scholar 

  47. Low, K. L., Shui, G., Natter, K., Yeo, W. K., Kohlwein, S. D., Dick, T., Rao, S. P. S., & Wenk, M. R. (2010). Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis Bacillus Calmette-Guerin. Journal of Biological Chemistry, 285, 21662–21670.

    Article  CAS  Google Scholar 

  48. Listenberger, L. L., Ostermeyer-Fay, A. G., Goldberg, E. B., Brown, W. J., & Brown, D. A. (2007). Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. Journal of Lipid Research, 48, 2751–2761.

    Article  CAS  Google Scholar 

  49. Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., Daffe, M., Emile, J. F., Marchou, B., Cardona, P. J., Chastellier, C., & Altare, F. (2008). Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathogen, 4(11), e1000204.

    Article  Google Scholar 

  50. Ohsaki, Y., Suzuki, M., & Fujimoto, T. (2014). Open questions in lipid droplet biology. Chemistry & Biology, 21, 86–96.

    Article  CAS  Google Scholar 

  51. Chang, B. H., Li, L., Paul, A., Taniguchi, S., Nannegari, V., Heird, W. C., & Chan, L. (2006). Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Molecular Cell. Biology, 26, 1063–1076.

    Article  CAS  Google Scholar 

  52. Kadereit, B., Kumar, P., Wang, W. J., Miranda, D., Snapp, E. L., Severina, N., Torregroza, I., Evans, T., & Silver, D. L. (2008). Evolutionarily conserved gene family important for fat storage. Proceedings of the National Academy of Sciences, 105, 94–99.

    Article  CAS  Google Scholar 

  53. Singh, V., Jamwal, S., Jain, R., Verma, P., Gokhale, R., & Rao, K. V. S. (2012). Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell press, 12, 669–681.

    CAS  Google Scholar 

  54. Chaban, V. V., & Khandelia, H. (2014). Lipid structure in triolein lipid droplets. Journal of Physical Chemistry B, 118, 10335–10340.

    Article  CAS  Google Scholar 

  55. Bickel, P. E., Tansey, J. T., & Welte, M. A. (2009). PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochimica et Biophysica Acta, 1791, 419–440.

    Article  CAS  Google Scholar 

  56. Daniel, J., Deb, C., Dubey, V. S., Sirakova, T. D., Abomoelak, B., Morbidoni, H. R., & Kolattukudy, P. E. (2004). Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. Journal of Bacteriology, 186, 5017–5030.

    Article  CAS  Google Scholar 

  57. Schue, M., Maurin, D., Dhouib, R., Bakala N’Goma, J. C., Delorme, V., Lambeau, G., Carriere, F., & Canaan, S. (2010). Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB Journal, 24, 1893–1903.

    Article  CAS  Google Scholar 

  58. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., & Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393, 537–544.

    Article  CAS  Google Scholar 

  59. Meena, L. S., & Rajni. (2010). Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS Journal, 277, 2416–2427.

    Article  CAS  Google Scholar 

  60. Rajni, and Meena, LS. (2011) Unique characteristic features of Mycobacterium tuberculosis in relation to immune system. Am. J. Immunol. 2011, 7: 1–8.

  61. Segovia-Juarez, J. L., Ganguli, S., & Kirschner, D. (2004). Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. Journal of Theoretical Biology, 231, 357–376.

    Article  CAS  Google Scholar 

  62. Dang, G., Chen, L., Li, Z., Deng, X., Cui, Y., Cao, J., Yu, S., Pang, H., & Liu, S. (2015). Expression, purification and characterisation of secreted esterase Rv2525c from Mycobacterium tuberculosis. Applied Biochemistry and Biotechnology, 176, 1–12.

    Article  CAS  Google Scholar 

  63. Pandey, A. K., & Sassetti, C. M. (2008). Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 105, 4376–4380.

    Article  CAS  Google Scholar 

  64. Meena, P. R., Monu, & Meena, L. S. (2015). Fibronectin binding protein and Ca2+ play an access key role to mediate pathogenesis in Mycobacterium tuberculosis: an overview. Biotechnolnology Aplicada Biochemistry. doi:10.1002/bab.1434.

    Google Scholar 

  65. Gengenbacher, M., & Kaufmann, S. H. (2012). Mycobacterium tuberculosis: success through dormancy. FEMS Microbiology Reviews, 36, 514–532.

    Article  CAS  Google Scholar 

  66. Riahi, F., Derakhahan, M., Mosavat, A., Soleimanpour, S., & Rezaee, S. A. (2015). Evaluation of point mutation detection in Mycobacterium tuberculosis with isoniazid resistance using real-time PCR and TaqMan probe assay. Applied Biochemistry and Biotechnology, 175, 2447–2455.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rajesh S. Gokhale for making this work possible. The authors acknowledge the financial support from GAP0092 of the Department of Science and Technology (DST) and OLP1121of the Council of Scientific & Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxman S. Meena.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monu, Meena, L.S. Roles of Triolein and Lipolytic Protein in the Pathogenesis and Survival of Mycobacterium tuberculosis: a Novel Therapeutic Approach. Appl Biochem Biotechnol 178, 1377–1389 (2016). https://doi.org/10.1007/s12010-015-1953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1953-z

Keyword

Navigation