Skip to main content
Log in

A Novel Mesophilic Anaerobic Digestion System for Biogas Production and In Situ Methane Enrichment from Coconut Shell Pyroligneous

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel mesophilic anaerobic digestion process with detoxification-treated coconut shell pyroligneous was established, exhibiting an effective advantage in biogas production. The pyroligneous collected contained 166.2 g l−1 acetic acid, indicating great potential for biogas production. Detoxification was an effective way of simultaneously enriching biodegradable ingredients and removing inhibitors (mainly as phenols and organic acids) for digestion process. The digestion process lasted 96 h and fermentation characteristics (chemical oxygen demand (COD) removal ratio, volatile fatty acid (VFA) consumptions, pH, total gas, methane yield, and phenol removal efficiency) were measured. The experiments successfully explored the optimum detoxification parameters, oxidized with 10 % H2O2 followed by overliming, and demonstrated 89.3 % COD removal, 91.4 % methane content, 0.305 LCH4/g COD removed CH4 yield, and 88.81 % phenol removal ratio. This study provided clues to overcome the negative effects of inhibitors in pyroligneous on biogas production. The findings could contribute to significant process in detoxified pretreatment of pyroligneous and develop an economically feasible technology for treating pyroligneous after producing charcoal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kajita, M., Kimura, T., Norinaga, K., Li, C. Z., & Hayashi, J. I. (2010). Catalytic and noncatalytic mechanisms in steam gasification of char from the pyrolysis of biomass. Energy and Fuels, 24, 108–116.

    Article  CAS  Google Scholar 

  2. Van de Steene, L., Tagutchou, J. P., Mermoud, F., Martin, E., & Salvador, S. (2010). A new experimental continuous fixed bed reactor to characterise wood char gasification. Fuel, 89, 3320–3329.

    Article  Google Scholar 

  3. Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91, 87–102.

    Article  CAS  Google Scholar 

  4. Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 106, 4044–4098.

    Article  CAS  Google Scholar 

  5. Mohan, D., Pittman, C. U., & Steele, H. P. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy and Fuels, 20, 848–889.

    Article  CAS  Google Scholar 

  6. Wei, Q., Ma, X. H., & Dong, J. (2010). Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. Journal of Analytical and Applied Pyrolysis, 87, 24–28.

    Article  CAS  Google Scholar 

  7. Bridgwater, A. V., Carson, P., & Coulson, M. (2007). A comparison of fast and slow pyrolysis liquids from mallee. International Journal Global Energy Issues, 27, 204.

    Article  Google Scholar 

  8. Chynoweth, D. P. (2005). Renewable biomethane from land and ocean energy crops and organic wastes. Hortscience, 40, 283–286.

    CAS  Google Scholar 

  9. Lester, J. N., Soares, A., Martin, D., Harper, P., Jefferson, B., Jefferson, B., Brigg, J., Wood, E., & Cartmell, E. (2009). A novel approach to the anaerobic treatment of municipal wastewater in temperate climates through primary sludge fortification. Environmental Technology, 30, 985–994.

    Article  CAS  Google Scholar 

  10. Gavala, H. N., Angelidaki, I., & Ahring, B. K. (2003). Kinetics and modeling of anaerobic digestion process. Advances Biochemical Engineering/Biotechnology, 81, 57–93.

    Article  CAS  Google Scholar 

  11. Vitt, S. M., Himelbloom, B. H., & Crapo, C. A. (2001). Inhibition of Listeria innocua and L-monocytogenes in a laboratory medium and cold-smoked salmon containing liquid smoke. Journal of Food Safety, 21, 111–25.

    Article  CAS  Google Scholar 

  12. Moosvi, S., & Madamwar, D. (2007). An integrated process for the treatment of CETP wastewater using coagulation, anaerobic and aerobic process. Bioresource Technology, 98, 3384–3392.

    Article  CAS  Google Scholar 

  13. Dilallo, R., & Albertson, O. E. (1961). Volatile acids by direct titration. Journal Water Pollution Control Federation, 33, 356–365.

    CAS  Google Scholar 

  14. Gilcreas, F. W. (1967). Future of standard methods for examination of water and waster water. Health Laboratory Science, 4, 137–141.

    CAS  Google Scholar 

  15. Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100, 4535.

    Article  CAS  Google Scholar 

  16. Singleton V. L. (1985). Citation classic—colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Current Contents/Agriculture Biology & Environmental Sciences, 18.

  17. Ma, X. H., Wei, Q., Zhang, S. S., Shi, L., & Zhao, Z. (2011). Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. Journal of Analytical and Applied Pyrolysis, 91, 338–343.

    Article  CAS  Google Scholar 

  18. Van Langerak, E. P. A., Ramaekers, H., Wiechers, J., Veeken, A. H. M., Hamelers, H. V. M., & Lettinga, G. (2000). Impact of location of CaCO3 precipitation on the development of intact anaerobic sludge. Water Research, 34, 437–446.

    Article  Google Scholar 

  19. Benitez, F. J., Acero, J. L., Real, F. J., Rubio, F. J., & Leal, A. I. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research, 35, 1338–1343.

    Article  CAS  Google Scholar 

  20. Riano, B., Coca, M., & Garcia-Gonzalez, A. C. M. (2014). Evaluation of Fenton method and ozone-based processes for colour and organic matter removal from biologically pre-treated swine manure. Chemosphere, 117, 193–199.

    Article  CAS  Google Scholar 

  21. Lee, H., & Shoda, M. (2008). Removal of COD and color from livestock wastewater by the Fenton method. Journal of Hazardous Materials, 153, 1314–1319.

    Article  CAS  Google Scholar 

  22. Argun, H., Kargi, F., Kapdan, F. K., & Oztekin, R. (2008). Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy, 33, 1813–1819.

    Article  CAS  Google Scholar 

  23. Searmsirimongkol, P., Rangsunvigit, P., Leethochawalit, M., & Chavadej, S. (2011). Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using an anaerobic sequencing batch reactor. International Journal of Hydrogen Energy, 36, 12810.

    Article  CAS  Google Scholar 

  24. Lin, C. Y., & Chen, H. P. (2006). Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. International Journal of Hydrogen Energy, 31, 953–960.

    Article  CAS  Google Scholar 

  25. Prochazka, J., Dolejs, P., Maca, J., & Dohanyos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93, 439–447.

    Article  Google Scholar 

  26. Zhu, H., Stadnyk, A., Beland, M., & Seto, P. (2008). Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresource Technology, 99, 5078–5084.

    Article  CAS  Google Scholar 

  27. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., & Hussy, I. (2002). Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy, 27, 1339–1347.

    Article  CAS  Google Scholar 

  28. Dixit, Y., & Kar, A. (2009). Antioxidative activity of some vegetable peels determined in vitro by inducing liver lipid peroxidation. Food Research International, 42, 1351–1354.

    Article  CAS  Google Scholar 

  29. Pevere, A., Guibaud, G., van Hullebusch, E. D., Boughzala, W., & Lens, P. N. L. (2007). Effect of Na+ and Ca2+ on the aggregation properties of sieved anaerobic granular sludge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306, 142–149.

    Article  CAS  Google Scholar 

  30. Pereira, M. A., Mota, M., & Alves, M. M. (2002). Operation of an anaerobic filter and an EGSB reactor for the treatment of an oleic acid-based effluent: influence of inoculum quality. Process Biochemistry, 37, 1025–1031.

    Article  CAS  Google Scholar 

  31. Wang, Y. T., David Gabbard, H., & Pai, P. C. (1991). Inhibition of acetate methanogenesis by phenols. Journal of Environmental Engineering, ASCE, 117, 487–500.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Support Plan Project of Guangdong Province Science and Technology (grant no. 2013B050800018), the Plan Projects of Guangzhou Science and Technology (grant no. 2014J2200068), and the Plan Projects of Guangdong Province Science and Technology (grant no. 2014A020208046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Rong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JR., Liu, XM., Chen, ZY. et al. A Novel Mesophilic Anaerobic Digestion System for Biogas Production and In Situ Methane Enrichment from Coconut Shell Pyroligneous. Appl Biochem Biotechnol 178, 1303–1314 (2016). https://doi.org/10.1007/s12010-015-1946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1946-y

Keywords

Navigation