Skip to main content
Log in

Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid (ALA) is a nonprotein amino acid that has been widely used in many fields. In this study, we developed a new process for ALA production by optimizing the in vivo heme biosynthesis pathway and the iron concentration during cultivation. With the addition of iron, co-overexpression of the heme synthesis pathway genes hemA, hemL, hemF, and hemD significantly increased the accumulation of ALA and cell biomass. Further experiments demonstrated that the increased ALA accumulation resulted from moderate repression of ALA dehydratase (encoded by hemB), which was caused by hemF overexpression. After the addition of an optimized concentration (7.5 mg/L) of iron, ALA production by the recombinant Escherichia coli LADF-6 strain that overexpressed hemA, hemL, hemD, and hemF increased to 2840 mg/L in flask cultures. After applying a batch fermentation strategy, the ALA concentration increased to 4.05 g/L, with a productivity of 0.127 g/L·h. The results showed that the moderate repression of the in vivo heme pathway enzyme ALA dehydratase and the simultaneous optimization of the in vitro iron ion concentration served to increase the production of ALA and cell biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kang, Z., Zhang, J., Zhou, J., Qi, Q., Du, G., & Chen, J. (2012). Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnology Advances, 30, 1533–1542.

    Article  CAS  Google Scholar 

  2. Beale, S. I. (1990). Biosynthesis of the tetrapyrrole pigment precursor, delta-aminolevulinic acid, from glutamate. Plant Physiology, 93, 1273–1279.

    Article  CAS  Google Scholar 

  3. Hunter, G., & Ferreira, G. (2009). 5-Aminolevulinate synthase: catalysis of the first step of heme biosynthesis. Cell and Molecular Biology (Noisy-le-grand), 55, 102–110.

    CAS  Google Scholar 

  4. Sasaki, K., Watanabe, M., Tanaka, T., & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58, 23–29.

    Article  CAS  Google Scholar 

  5. Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. (2011). Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 13, 492–498.

    Article  CAS  Google Scholar 

  6. Luer, C., Schauer, S., Mobius, K., Schulze, J., Schubert, W. D., Heinz, D. W., Jahn, D., & Moser, J. (2005). Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. The Journal of Biological Chemistry, 280, 18568–18572.

    Article  Google Scholar 

  7. Bhowmick, R., & Girotti, A. W. (2010). Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radical Biology and Medicine, 48, 1296–1301.

    Article  CAS  Google Scholar 

  8. Mikolajewska, P., Donnelly, R. F., Garland, M. J., Morrow, D. I., Singh, T. R., Iani, V., Moan, J., & Juzeniene, A. (2010). Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharmaceutical Research, 27, 2213–2220.

    Article  CAS  Google Scholar 

  9. Sasikala, C., Ramana, C. V., & Rao, P. R. (1994). 5-Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnology Progress, 10, 451–459.

    Article  CAS  Google Scholar 

  10. Takeya, H., Tanaka, T., Hotta, T., & Sasaki, K. (1997). Production methods and applications of 5-aminolevulinic acid. Porphyrins, 6, 127–135.

    Google Scholar 

  11. Lin, J., Fu, W., & Cen, P. (2009). Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresource Technology, 100, 2293–2297.

    Article  CAS  Google Scholar 

  12. Neidle, E. L., & Kaplan, S. (1993). Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. Journal of Bacteriology, 175, 2292–2303.

    CAS  Google Scholar 

  13. Qin, G., Lin, J., Liu, X., & Cen, P. (2006). Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 102, 316–322.

    Article  CAS  Google Scholar 

  14. van der Werf, M. J., & Zeikus, J. G. (1996). 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Applied and Environmental Microbiology, 62, 3560–3566.

    Google Scholar 

  15. Xie, L., Hall, D., Eiteman, M. A., & Altman, E. (2003). Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Applied Microbiology and Biotechnology, 63, 267–273.

    Article  CAS  Google Scholar 

  16. Chung, S. Y., Seo, K. H., & Rhee, J. I. (2005). Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochemistry, 40, 385–394.

    Article  CAS  Google Scholar 

  17. Fu, W., Lin, J., & Cen, P. (2008). Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technology, 99, 4864–4870.

    Article  CAS  Google Scholar 

  18. Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27, 215–237.

    Article  CAS  Google Scholar 

  19. Kang, Z., Geng, Y., Xia, Y. z., Kang, J., & Qi, Q. (2009). Engineering Escherichia coli for an efficient aerobic fermentation platform. Journal of Biotechnology, 144, 58–63.

    Article  CAS  Google Scholar 

  20. Yoon, S., Han, M.-J., Jeong, H., Lee, C., Xia, X.-X., Lee, D.-H., Shim, J., Lee, S., Oh, T., & Kim, J. (2012). Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biology, 13, R37.

    Article  CAS  Google Scholar 

  21. Wang, X., Wang, Q., Qi, Q. (2015). Identification of riboflavin: revealing different metabolic characteristics between Escherichia coli BL21 (DE3) and MG1655. FEMS Microbiology Letters, 362, fnv071.

  22. Han, M. J., Lee, S. Y., & Hong, S. H. (2012). Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains. Journal of Microbiology and Biotechnology, 22, 470–478.

    Article  CAS  Google Scholar 

  23. Kim, B., Park, H., Na, D., & Lee, S. Y. (2014). Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnology Journal, 9, 621–629.

    Article  CAS  Google Scholar 

  24. Qian, Z. G., Xia, X. X., Choi, J. H., & Lee, S. Y. (2008). Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnology and Bioengineering, 101, 587–601.

    Article  CAS  Google Scholar 

  25. Li, N., Zhang, B., Chen, T., Wang, Z., Tang, Y.-J., & Zhao, X. (2013). Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol. Journal of Industrial Microbiology & Biotechnology, 40, 1461–1475.

    Article  CAS  Google Scholar 

  26. Xia, X.-X., Qian, Z.-G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107, 14059–14063.

    Article  CAS  Google Scholar 

  27. Tolia, N. H., & Joshua-Tor, L. (2006). Strategies for protein coexpression in Escherichia coli. Nature Methods, 3, 55–64.

    Article  CAS  Google Scholar 

  28. Zhang, J., Kang, Z., Chen, J., & Du, G. (2015). Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports, 5, 8584.

    Article  CAS  Google Scholar 

  29. Mauzerall, D., & Granick, S. (1956). The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. The Journal of Biological Chemistry, 219, 435–446.

    CAS  Google Scholar 

  30. Sassa, S. (1982). Delta-aminolevulinic acid dehydratase assay. Enzyme, 28, 133–145.

    CAS  Google Scholar 

  31. Frankenberg, N., Moser, J., & Jahn, D. (2003). Bacterial heme biosynthesis and its biotechnological application. Applied Microbiology and Biotechnology, 63, 115–127.

    Article  CAS  Google Scholar 

  32. Franken, A. W., Lokman, B. C., Ram, A. J., Punt, P., Hondel, C. M. J. J., & Weert, S. (2011). Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Applied Microbiology and Biotechnology, 91, 447–460.

    Article  CAS  Google Scholar 

  33. Schobert, M., & Jahn, D. (2002). Regulation of heme biosynthesis in non-phototrophic bacteria. Journal of Molecular Microbiology and Biotechnology, 4, 287–294.

    CAS  Google Scholar 

  34. Möbius, K., Arias-Cartin, R., Breckau, D., Hännig, A.-L., Riedmann, K., Biedendieck, R., Schröder, S., Becher, D., Magalon, A., Moser, J., Jahn, M., & Jahn, D. (2010). Heme biosynthesis is coupled to electron transport chains for energy generation. Proceedings of the National Academy of Sciences of the United States of America, 107, 10436–10441.

    Article  Google Scholar 

  35. Touati, D. (2000). Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics, 373, 1–6.

    Article  CAS  Google Scholar 

  36. Massé, E., Salvail, H., Desnoyers, G., & Arguin, M. (2007). Small RNAs controlling iron metabolism. Current Opinion in Microbiology, 10, 140–145.

    Article  Google Scholar 

  37. Kang, Z., Wang, X., Li, Y., Wang, Q., & Qi, Q. (2012). Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli. Biotechnology Letters, 34, 527–531.

    Article  CAS  Google Scholar 

  38. Li, F., Wang, Y., Gong, K., Wang, Q., Liang, Q., & Qi, Q. (2014). Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiology Letters, 350, 209–215.

    Article  CAS  Google Scholar 

  39. Panek, H., & O'Brian, M. R. (2002). A whole genome view of prokaryotic haem biosynthesis. Microbiology, 148, 2273–2282.

    Article  CAS  Google Scholar 

  40. Lee, M. J., Kim, H. J., Lee, J. Y., Kwon, A. S., Jun, S. Y., Kang, S. H., & Kim, P. (2013). Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 23, 668–673.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31200020), the Major State Basic Research Development Program of China (973 Program, 2013CB733602, 2014CB745103), the Jiangsu Planned Projects for Postdoctoral Research Funds (1301010B), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1135), and the 111 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Kang or Guocheng Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Kang, Z., Ding, W. et al. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production. Appl Biochem Biotechnol 178, 1252–1262 (2016). https://doi.org/10.1007/s12010-015-1942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1942-2

Keywords

Navigation