Skip to main content
Log in

Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm3 and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun, R. C. (2010). Cereal straw as a resource for sustainable biomaterials and biofuels. London: Elsevier.

    Google Scholar 

  2. Sun, X. F., Sun, R. C., & Tomkinson, J. (2004). Isolation and characterization of cellulose obtained by a two-stage treatment with organosolv and cyanamide activated hydrogen peroxide from wheat straw. Carbohydrate Polymers, 55, 379–391.

    Article  CAS  Google Scholar 

  3. Gismatulina, Y. A., Budaeva, V. V., Veprev, S. G., Sakovich, G. V., & Shumny, V. K. (2015). Cellulose from various parts of Soranovskii Miscanthus. Russian Journal of Genetics: Applied Research, 5, 60–68.

    Article  Google Scholar 

  4. Potucek, F., Gurung, B., & Hajkova, K. (2014). Soda pulping of rapeseed straw. Cellulose Chemistry and Technology, 48, 683–691.

    CAS  Google Scholar 

  5. Jones, M. B., & Walsh, M. (2001). Miscanthus for energy and fibre. London: Earthscan.

    Google Scholar 

  6. Shumny, V. К., Veprev, S. G., Nechiporenko, N. N., Goryachkovskaya, T. N., Slynko, N. M., Kolchanov, N. A., & Peltek, S. E. (2010). A new form of Miscanthus (Chinese silver grass, Miscanthus sinensis—Andersson) as a promising source of cellulosic biomass. Advances in Bioscience and Biotechnology, 1, 167–170.

    Article  Google Scholar 

  7. Chaud, L. C. S., Silva, D. D. V., Mattos, R. T., & Felipe, M. G. A. (2012). Evaluation of oat hull hemicellulosic hydrolysate fermentability employing Pichia stipites. Brazilian Archives of Biology and Technology, 55, 771–777.

    Article  CAS  Google Scholar 

  8. Yadav, M.P., Hicks, K.B., Johnston, D.B., Hotchkiss, A.T., Chau, H.K., Hanah, K. (2015). Production of bio-based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls. Food Hydrocolloids. In Press. doi:10.1016/j.foodhyd.2015.02.017.

  9. Pourali, O., Asghari, F., & Yoshida, H. (2009). Sub-critical water treatment of rice bran to produce valuable materials. Food Chemistry, 115, 1–7.

    Article  CAS  Google Scholar 

  10. Cordeiro, N., Neto, C. P., Rocha, J., Belgacem, M. N., & Gandini, A. (2002). The organosolv fractionation of cork components. Holzforschung, 56, 135–142.

    Article  CAS  Google Scholar 

  11. Gabov, K., Fardim, P., & Gomes, F. (2013). Hydrotropic fractionation of birch wood into cellulose and lignin: a new step towards green biorefinery. Bioresouces, 8, 3518–3531.

    Google Scholar 

  12. Denisova, M. N., Budaeva, V. V., & Pavlov, I. N. (2015). Pulps isolated from Miscanthus, oat hulls, and intermediate flax straw with sodium benzoate. Korean Journal of Chemical Engineering, 32, 202–205.

    Article  CAS  Google Scholar 

  13. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  14. Atykyan, N., Zakharkin, D., Revin, V., Revina, N., Revina, E. (2015). The enzymatic hydrolysis and fermentation of lignocellulosic ultradisperse particles. Journal of Biotechnology, 208. doi:10.1016/j.jbiotec.2015.06.092.

  15. Soudham, V. P., Alriksson, B., & Jönsson, L. J. (2011). Reducing agents improve enzymatic hydrolysis of cellulosic substrates in the presence of pretreatment liquid. Journal of Biotechnology, 155, 244–250.

    Article  CAS  Google Scholar 

  16. Baibakova, O. V., & Skiba, E. A. (2015). Biotechnological aspects of ethanol biosynthesis from Miscanthus. Russian Journal of Genetics: Applied Research, 5, 69–74.

    Article  Google Scholar 

  17. Makarova, E. I., Budaeva, V. V., & Skiba, E. A. (2014). Enzymatic hydrolysis of cellulose from oat husks at different substrate concentrations. Russian Journal of Bioorganic Chemistry, 40, 726–732.

    Article  CAS  Google Scholar 

  18. Taherzaden, M. J., & Karimi, K. (2007). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources, 2, 707–738.

    Google Scholar 

  19. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 99, 8940–8948.

    Article  CAS  Google Scholar 

  20. Kristensen, J. B., Felby, C., & Jorgensen, H. (2009). Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnology for Biofuels, 2, 1–11.

    Article  Google Scholar 

  21. Di Risio, S., Hu, C. S., Saville, B. A., Liao, D., & Lortie, J. (2011). Large-scale, high-solids enzymatic hydrolysis of stream-exploded poplar. Biofuels, Bioproducts and Biorefining, 5, 609–620.

    Article  Google Scholar 

  22. Modenbach, A. A., & Nokes, S. E. (2012). The use of high-solids loadings in biomass pretreatment—a review. Biotechnology and Bioengineering, 109, 1–13.

    Article  Google Scholar 

  23. Denisova, M. N., & Budaeva, V. V. (2013). Characteristics of cellulose obtained using the hydrotropic method with a versatile thermobaric device. Chemistry for Sustainable Development, 21, 545–549.

    CAS  Google Scholar 

  24. Obolenskaya, A. V., Yelnitskaya, Z. P., Leonovich, A. A. (1991). Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory works on wood and cellulose chemistry: Textbook for higher educational institutions). Ecology Publisher, Moscow. (in Russian). Book can be downloaded free of charge from direct link: http://www.twirpx.com/file/190572.

  25. TAPPI method T222 om-83 (1999). Acid-insoluble lignin in wood and pulp. In Test Methods 1998-1999. TAPPI Press.

  26. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  27. Yu, Z., Jameel, H., Chang, H.-M., Philips, R., & Park, S. (2012). Evaluation of the factors affecting Avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnology and Bioengineering, 5, 1449–1463.

    Google Scholar 

  28. Yoshida, M., & Liu, Y. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolisis of Miscanthus sinensis to monosaccharides. Bioscience, Biotechnology, and Biochemistry, 72, 805–810.

    Article  CAS  Google Scholar 

  29. Xu, J., Wang, J., Sharma-Shivappa, R. R., & Cheng, J. J. (2011). Enzymatic hydrolysis of switchgrass and coastal Bermuda grass pretreated with different chemical methods. Bioresources, 6, 2990–3003.

    CAS  Google Scholar 

  30. Ioelovich, M., & Morag, E. (2012). Study of enzymatic hydrolysis of pretreated biomass at increased solids loading. Bioresources, 7, 4672–4682.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina N. Denisova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, M.N., Makarova, E.I., Pavlov, I.N. et al. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings. Appl Biochem Biotechnol 178, 1196–1206 (2016). https://doi.org/10.1007/s12010-015-1938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1938-y

Keywords

Navigation