Skip to main content
Log in

Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The three-dimensional distribution (x, y, and z) of ultrasound-induced microalgal cell disruption in a sonochemical reactor was predicted by solving the Helmholtz equation using a three-dimensional acoustic module in the COMSOL Multiphysics software. The simulated local ultrasound pressure at any given location (x, y, and z) was found to correlate with cell disruption of a freshwater alga, Scenedesmus dimorphus, represented by the change of algal cell particle/debris concentration, chlorophyll-a fluorescence density (CAFD), and Nile red stained lipid fluorescence density (LFD), which was also validated by the model reaction of potassium iodide oxidation (the Weissler reaction). Furthermore, the effect of ultrasound power intensity and processing duration on algal cell disruption was examined to address the limitation of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  2. Donohue, T. J., & Cogdell, R. J. (2006). Microorganisms and clean energy. Nature Reviews Microbiology, 4(11), 800.

    Article  CAS  Google Scholar 

  3. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research, 1(1), 20–43.

    Article  Google Scholar 

  4. Baumgarten, E., Nagel, M., & Tischner, R. (1999). Reduction of the nitrogen and carbon content in swine waste with algae and bacteria. Applied Microbiology and Biotechnology, 52(2), 281–284.

    Article  CAS  Google Scholar 

  5. Benemann, J. R. (1997). CO2 mitigation with microalgae systems. Energy Conversion and Management, 38, S475–S479.

    Article  CAS  Google Scholar 

  6. Rodríguez-Ruiz, J., Belarbi, E. H., Sánchez, J. L. G., & Alonso, D. L. (1998). Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnology Techniques, 12(9), 689–691.

    Article  Google Scholar 

  7. Ma, B., Chen, Y., Hao, H., Wu, M., Wang, B., Lv, H., & Zhang, G. (2005). Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids and Surfaces B: Biointerfaces, 41(2), 197–201.

    Article  CAS  Google Scholar 

  8. Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresource Technology, 114, 457–465.

    Article  CAS  Google Scholar 

  9. Wu, X., Joyce, E. M., & Mason, T. J. (2012). Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Research, 46(9), 2851–2858.

    Article  CAS  Google Scholar 

  10. Joyce, E., Phull, S. S., Lorimer, J. P., & Mason, T. J. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315–318.

    Article  CAS  Google Scholar 

  11. Keil, F. J., & Dahnke, S. (1997). Numerical calculation of pressure fields in sonochemical reactors—linear effects in homogeneous phase. Chemical Engineering, 41(1), 41–55.

    CAS  Google Scholar 

  12. Dähnke, S., & Keil, F. J. (1998). Modeling of three-dimensional linear pressure fields in sonochemical reactors with homogeneous and inhomogeneous density distributions of cavitation bubbles. Industrial & Engineering Chemistry Research, 37(3), 848–864.

    Article  Google Scholar 

  13. Saez, V., Frías-Ferrer, A., Iniesta, J., González-García, J., Aldaz, A., & Riera, E. (2005). Characterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrasonics Sonochemistry, 12(1), 59–65.

    Article  CAS  Google Scholar 

  14. Sutkar, V. S., Gogate, P. R., & Csoka, L. (2010). Theoretical prediction of cavitational activity distribution in sonochemical reactors. Chemical Engineering Journal, 158(2), 290–295.

    Article  CAS  Google Scholar 

  15. Csoka, L., Katekhaye, S. N., & Gogate, P. R. (2011). Comparison of cavitational activity in different configurations of sonochemical reactors using model reaction supported with theoretical simulations. Chemical Engineering Journal, 178, 384–390.

    Article  CAS  Google Scholar 

  16. Weissler, A., Cooper, H. W., & Snyder, S. (1950). Chemical effect of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. Journal of the American Chemical Society, 72(4), 1769–1775.

    Article  CAS  Google Scholar 

  17. Suslick, K. S., Mdleleni, M. M., & Ries, J. T. (1997). Chemistry induced by hydrodynamic cavitation. Journal of the American Chemical Society, 119(39), 9303–9304.

    Article  CAS  Google Scholar 

  18. Gogate, P. R., Shirgaonkar, I. Z., Sivakumar, M., Senthilkumar, P., Vichare, N. P., & Pandit, A. B. (2001). Cavitation reactors: efficiency assessment using a model reaction. AIChE Journal, 47(11), 2526–2538.

    Article  CAS  Google Scholar 

  19. Asakura, Y., Nishida, T., Matsuoka, T., & Koda, S. (2008). Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrasonics Sonochemistry, 15(3), 244–250.

    Article  CAS  Google Scholar 

  20. Moholkar, V. S., Sable, S. P., & Pandit, A. B. (2000). Mapping the cavitation intensity in an ultrasonic bath using the acoustic emission. AIChE Journal, 46(4), 684–694.

    Article  CAS  Google Scholar 

  21. Gogate, P. R., Tatake, P. A., Kanthale, P. M., & Pandit, A. B. (2002). Mapping of sonochemical reactors: review, analysis, and experimental verification. AIChE Journal, 48(7), 1542–1560.

    Article  CAS  Google Scholar 

  22. Wang, M., Yuan, W., Jiang, X., Jing, Y., & Wang, Z. (2014). Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 153, 315–321.

    Article  CAS  Google Scholar 

  23. Wang, M., & Yuan, W. (2015). Microalgal cell disruption via ultrasonic nozzle spraying. Applied Biochemistry and Biotechnology, 175(2), 1111–1122.

    Article  CAS  Google Scholar 

  24. Wang, M., & Yuan, W. (2015). Microalgal cell disruption in a high-power ultrasonic flow system. Bioresource Technology, 193, 171–177.

    Article  CAS  Google Scholar 

  25. Tomita, Y., Robinson, P. B., Tong, R. P., & Blake, J. R. (2002). Growth and collapse of cavitation bubbles near a curved rigid boundary. Journal of Fluid Mechanics, 466, 259–283.

    Article  CAS  Google Scholar 

  26. Bremond, N., Arora, M., Dammer, S. M., & Lohse, D. (2006). Interaction of cavitation bubbles on a wall. Physics of Fluids (1994–Present), 18(12), 121505.

    Article  Google Scholar 

  27. Brennen, C. E. (2013). Cavitation and bubble dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  28. Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T., Yamamoto, T. (2001). Cavitation behavior near solid boundaries. In Proceedings of CAV 2001 4th International Symposium on Cavitation.

  29. Wang, M., & Yuan, W. (2016). Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption. Ultrasonics Sonochemistry, 28, 7–14.

    Article  CAS  Google Scholar 

  30. Matile, P., Hörtensteiner, S., & Thomas, H. (1999). Chlorophyll degradation. Annual Review of Plant Biology, 50(1), 67–95.

    Article  CAS  Google Scholar 

  31. Gogate, P. R., Wilhelm, A. M., & Pandit, A. B. (2003). Some aspects of the design of sonochemical reactors. Ultrasonics Sonochemistry, 10(6), 325–330.

    Article  CAS  Google Scholar 

  32. Sutkar, V. S., & Gogate, P. R. (2009). Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters. Chemical Engineering Journal, 155(1), 26–36.

    Article  CAS  Google Scholar 

  33. Gogate, P. R., & Pandit, A. B. (2000). Engineering design method for cavitational reactors: I. Sonochemical reactors. AIChE Journal, 46(2), 372–379.

    Article  CAS  Google Scholar 

  34. Hua, I., Hochemer, R. H., & Hoffmann, M. R. (1995). Sonochemical degradation of p-nitrophenol in a parallel-plate near-field acoustical processor. Environmental Science & Technology, 29(11), 2790–2796.

    Article  CAS  Google Scholar 

  35. Sivakumar, M., & Pandit, A. B. (2001). Ultrasound enhanced degradation of Rhodamine B: optimization with power density. Ultrasonics Sonochemistry, 8(3), 233–240.

    Article  CAS  Google Scholar 

  36. Zhang, G., Zhang, P., & Fan, M. (2009). Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. Ultrasonics Sonochemistry, 16(3), 334–338.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the US National Science Foundation (Award No. CMMI-1239078) and the startup fund of North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yuan, W. & Hale, A. Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption. Appl Biochem Biotechnol 178, 1184–1195 (2016). https://doi.org/10.1007/s12010-015-1937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1937-z

Keywords

Navigation