Skip to main content
Log in

Highly Bactericidal Polyurethane Effective Against Both Normal and Drug-Resistant Bacteria: Potential Use as an Air Filter Coating

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The battle against the prevalence of hospital-acquired infections has underscored the importance of identifying and maintaining the cleanliness of possible infection transmission sources in the patient’s environment. One of the most crucial lines of defense for mitigating the spread of pathogens in a healthcare facility is the removal of microorganisms from the environment by air filtration systems. After removing the pathogenic microorganisms, the filters used in these systems can serve as reservoirs for the pathogens and pose a risk for secondary infection. This threat, combined with the ever-growing prevalence of drug-resistant bacterial strains, substantiates the need for an effective bactericidal air filter. To this end, a broad-spectrum bactericidal polyurethane incorporating immobilized quaternary ammonium groups was developed for use as an air filter coating. In this study, the bactericidal activity of the polymer coating on high-efficiency particulate air (HEPA) filter samples was quantified against eight bacterial strains commonly responsible for nosocomial infection—including drug-resistant strains, and confirmed when applied as a filter coating in conditions mimicking those of its intended application. The coated HEPA filter samples exhibited high bactericidal activity against all eight strains, and the polyurethane was concluded to be an effective coating in rendering HEPA filters bactericidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wenzel, R. P. (1995). The Lowbury lecture. The economics of nosocomial infections. The Journal of Hospital Infection, 31, 79–87.

    Article  CAS  Google Scholar 

  2. Wenzel, R. P., & Edmond, M. B. (2001). The impact of hospital-acquired bloodstream infections. Emerging Infectious Diseases, 7, 174–177.

    Article  CAS  Google Scholar 

  3. Edmond, M. B., Wallace, S. E., McClish, D. K., Pfaller, M. A., Jones, R. N., & Wenzel, R. P. (1999). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clinical Infectious Diseases, 29, 239–244.

    Article  CAS  Google Scholar 

  4. Laxminarayan, R., & Malani, A. (2007). Extending the cure: policy responses to the growing threat of antibiotic resistance. London: Earthscan.

    Google Scholar 

  5. Magill, S. S., Edwards, J. R., Bamberg, W., Beldavs, Z. G., Dumyati, G., Kainer, M. A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J., Ray, S. M., Thompson, D. L., Wilson, L. E., Fridkin, S. K., & Team, E. I. P. H.-A. I. a. A. U. P. S. (2014). Multistate point-prevalence survey of health care-associated infections. The New England Journal of Medicine, 370, 1198–1208.

    Article  CAS  Google Scholar 

  6. Jarvis, W. R., & Martone, W. J. (1992). Predominant pathogens in hospital infections. The Journal of Antimicrobial Chemotherapy, 29(Suppl A), 19–24.

    Article  Google Scholar 

  7. Weinstein, R. A. (1998). Nosocomial infection update. Emerging Infectious Diseases, 4, 416–420.

    Article  CAS  Google Scholar 

  8. Ducel, G., Fabry, J., & Nicolle, L. (2002). Prevention of hospital acquired infections: a practical guide. Geneva: World Health Organization.

    Google Scholar 

  9. Kramer, A., Schwebke, I., & Kampf, G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases, 6, 130.

    Article  Google Scholar 

  10. Himanshu Mittal, S. R. P., Pottage, T., Walker, J. T., & Bennett, A. M. (2011). Survival of microorganisms on HEPA filters. Applied Biosafety, 16, 163–166.

    Article  Google Scholar 

  11. Miaśkiewicz-Peska, E., & Łebkowska, M. (2011). Effect of antimicrobial air filter treatment on bacterial survival. Fibres & Textiles in Eastern Europe, 19, 73–77.

    Google Scholar 

  12. (2011). Basic infection control and prevention plan for outpatient oncology settings, Atlanta.

  13. Abraham, G., Le Blanc Smith, P. M., & McCabe, P. (1998). HEPA filter replacement experience in a biological laboratory. Journal-American Biological Safety Association, 3, 134–142.

    Google Scholar 

  14. Maus, R., Goppelsröder, A., & Umhauer, H. (2001). Survival of bacterial and mold spores in air filter media. Atmospheric Environment, 35, 105–113.

    Article  CAS  Google Scholar 

  15. Chuaybamroong, P., Chotigawin, R., Supothina, S., Sribenjalux, P., Larpkiattaworn, S., & Wu, C. Y. (2010). Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air, 20, 246–254.

    Article  CAS  Google Scholar 

  16. Ding, X., Yang, C., Lim, T. P., Hsu, L. Y., Engler, A. C., Hedrick, J. L., & Yang, Y. Y. (2012). Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials, 33, 6593–6603.

    Article  CAS  Google Scholar 

  17. Garcia-Fernandez, L., Cui, J. X., Serrano, C., Shafiq, Z., Gropeanu, R. A., San Miguel, V., Ramos, J. I., Wang, M., Auernhammer, G. K., Ritz, S., Golriz, A. A., Berger, R., Wagner, M., & del Campo, A. (2013). Antibacterial strategies from the sea: polymer-bound Cl-catechols for prevention of biofilm formation. Advanced Materials, 25, 529–533.

    Article  CAS  Google Scholar 

  18. Ikeda, T., Hirayama, H., Yamaguchi, H., Tazuke, S., & Watanabe, M. (1986). Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrobial Agents and Chemotherapy, 30, 132–136.

    Article  CAS  Google Scholar 

  19. Kampf, G., Dietze, B., Grosse-Siestrup, C., Wendt, C., & Martiny, H. (1998). Microbicidal activity of a new silver-containing polymer, SPI-ARGENT II. Antimicrobial Agents and Chemotherapy, 42, 2440–2442.

    CAS  Google Scholar 

  20. Li, Y., Kumar, K. N., Dabkowski, J. M., Corrigan, M., Scott, R. W., Nusslein, K., & Tew, G. N. (2012). New bactericidal surgical suture coating. Langmuir, 28, 12134–12139.

    Article  CAS  Google Scholar 

  21. Sinclair, K. D., Pham, T. X., Farnsworth, R. W., Williams, D. L., Loc-Carrillo, C., Horne, L. A., Ingebretsen, S. H., & Bloebaum, R. D. (2012). Development of a broad spectrum polymer-released antimicrobial coating for the prevention of resistant strain bacterial infections. Journal of Biomedical Materials Research, Part A, 100A, 2732–2738.

    Article  CAS  Google Scholar 

  22. Timofeeva, L., & Kleshcheva, N. (2011). Antimicrobial polymers: mechanism of action, factors of activity, and applications. Applied Microbiology and Biotechnology, 89, 475–492.

    Article  CAS  Google Scholar 

  23. Wynne, J. H., Fulmer, P. A., McCluskey, D. M., Mackey, N. M., & Buchanan, J. P. (2011). Synthesis and development of a multifunctional self-decontaminating polyurethane coating. ACS Applied Materials & Interfaces, 3, 2005–2011.

    Article  CAS  Google Scholar 

  24. Park, D., Finlay, J. A., Ward, R. J., Weinman, C. J., Krishnan, S., Paik, M., Sohn, K. E., Callow, M. E., Callow, J. A., Handlin, D. L., Willis, C. L., Fischer, D. A., Angert, E. R., Kramer, E. J., & Ober, C. K. (2010). Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. ACS Applied Materials & Interfaces, 2, 703–711.

    Article  CAS  Google Scholar 

  25. Tiller, J. C., Lee, S. B., Lewis, K., & Klibanov, A. M. (2002). Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and Bioengineering, 79, 465–471.

    Article  CAS  Google Scholar 

  26. Cao, Z. B., & Sun, Y. Y. (2009). Polymeric N-halamine latex emulsions for use in antimicrobial paints. ACS Applied Materials & Interfaces, 1, 494–504.

    Article  CAS  Google Scholar 

  27. Khajavi, R., Bahadoran, M. M. S., Bahador, A., & Khosravi, A. (2013). Removal of microbes and air pollutants passing through nonwoven polypropylene filters by activated carbon and nanosilver colloidal layers. Journal of Industrial Textiles, 42, 219–230.

    Article  Google Scholar 

  28. Shearer, A. E., Paik, J. S., Hoover, D. G., Haynie, S. L., & Kelley, M. J. (2000). Potential of an antibacterial ultraviolet-irradiated nylon film. Biotechnology and Bioengineering, 67, 141–146.

    Article  CAS  Google Scholar 

  29. Nohr, R. S., & Macdonald, J. G. (1994). New biomaterials through surface segregation phenomenon: new quaternary ammonium compounds as antibacterial agents. Journal of Biomaterials Science Polymer Edition, 5, 607–619.

    Article  CAS  Google Scholar 

  30. Medlin, J. (1997). Germ warfare. Environmental Health Perspectives, 105, 290–292.

    Article  CAS  Google Scholar 

  31. Chattopadhyay, D. K., & Raju, K. (2007). Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 32, 352–418.

    Article  CAS  Google Scholar 

  32. Tiller, J. C., Liao, C. J., Lewis, K., & Klibanov, A. M. (2001). Designing surfaces that kill bacteria on contact. Proceedings of the National Academy of Sciences of the United States of America, 98, 5981–5985.

    Article  CAS  Google Scholar 

  33. McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179.

    CAS  Google Scholar 

  34. Melo, L. D., Palombo, R. R., Petri, D. F. S., Bruns, M., Pereira, E. M. A., & Carmona-Ribeiro, A. M. (2011). Structure-activity relationship for quaternary ammonium compounds hybridized with poly(methyl methacrylate). ACS Applied Materials & Interfaces, 3, 1933–1939.

    Article  CAS  Google Scholar 

  35. Thorsteinsson, T., Masson, M., Kristinsson, K. G., Hjalmarsdottir, M. A., Hilmarsson, H., & Loftsson, T. (2003). Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds. Journal of Medicinal Chemistry, 46, 4173–4181.

    Article  CAS  Google Scholar 

  36. Denyer, S. P., & Stewart, G. (1998). Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation, 41, 261–268.

    Article  CAS  Google Scholar 

  37. Fraise, A., Maillard, J.-Y., and Sattar, S. (2012). Russell, Hugo and Ayliffe’s principles and practice of disinfection, preservation and sterilization, Wiley.

  38. Tashiro, T. (2001). Antibacterial and bacterium adsorbing macromolecules. Macromolecular Materials and Engineering, 286, 63–87.

    Article  CAS  Google Scholar 

  39. Gabriel, G. J., Som, A., Madkour, A. E., Eren, T., & Tew, G. N. (2007). Infectious disease: connecting innate immunity to biocidal polymers. Materials Science and Engineering R: Reports, 57, 28–64.

    Article  Google Scholar 

  40. Hsu, B. B., Ouyang, J., Wong, S. Y., Hammond, P. T., & Klibanov, A. M. (2011). On structural damage incurred by bacteria upon exposure to hydrophobic polycationic coatings. Biotechnology Letters, 33, 411–416.

    Article  CAS  Google Scholar 

  41. Park, D., Larson, A. M., Klibanov, A. M., & Wang, Y. (2013). Antiviral and antibacterial polyurethanes of various modalities. Applied Biochemistry and Biotechnology, 169, 1134–1146.

    Article  CAS  Google Scholar 

  42. First, M. W. (1998). HEPA filters. Journal-American Biological Safety Association, 3, 33–42.

    Google Scholar 

  43. Cooper, A., Oldinski, R., Ma, H. Y., Bryers, J. D., & Zhang, M. Q. (2013). Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydrate Polymers, 92, 254–259.

    Article  CAS  Google Scholar 

  44. Mansur-Azzarn, N., Hosseinidoust, Z., Woo, S. G., Vyhnalkova, R., Eisenberg, A., & van de Ven, T. G. M. (2014). Bacteria survival probability in bactericidal filter paper. Colloids and Surfaces B: Biointerfaces, 117, 383–388.

    Article  Google Scholar 

  45. Haenle, M., Fritsche, A., Zietz, C., Bader, R., Heidenau, F., Mittelmeier, W., & Gollwitzer, H. (2011). An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties. Journal of Materials Science Materials in Medicine, 22, 381–387.

    Article  CAS  Google Scholar 

  46. Albert, M., Feiertag, P., Hayn, G., Saf, R., & Hönig, H. (2003). Structure-activity relationships of oligoguanidines influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules, 4, 1811–1817.

    Article  CAS  Google Scholar 

  47. Vyhnalkova, R., Mansur-Azzam, N., Eisenberg, A., and van de Ven, T. G. M. (2012) Ten million fold reduction of live bacteria by bactericidal filter paper. WILEY-VCH Verlag GmbH & Co. Adv. Funct. Mater (pp. 4096–4100).

  48. Cetinkaya, Y., Falk, P., & Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clinical Microbiology Reviews, 13, 686–707.

    Article  CAS  Google Scholar 

  49. Li, J., Nation, R. L., Milne, R. W., Turnidge, J. D., & Coulthard, K. (2005). Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. International Journal of Antimicrobial Agents, 25, 11–25.

    Article  Google Scholar 

  50. Hayakawa, K., Marchaim, D., Divine, G. W., Pogue, J. M., Kumar, S., Lephart, P., Risko, K., Sobel, J. D., & Kaye, K. S. (2012). Growing prevalence of Providencia stuartii associated with the increased usage of colistin at a tertiary health care center. International Journal of Infectious Diseases, 16, e646–e648.

    Article  Google Scholar 

  51. Stock, I., & Wiedemann, B. (1998). Natural antibiotic susceptibility of Providencia stuartii, P. rettgeri, P. alcalifaciens and P. rustigianii strains. Journal of Medical Microbiology, 47, 629–642.

    Article  CAS  Google Scholar 

  52. Sleigh, J. D. (1983). Antibiotic resistance in Serratia marcescens. British Medical Journal (Clinical Research Ed), 287, 1651–1653.

    Article  CAS  Google Scholar 

  53. Ahmad, N., Plorde, J. J., & Drew, W. L. (2010). Sherris medical microbiology (5th ed.). United States: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by State Bioscience Proof of Concept Grant (CU3460D) and University of Colorado Denver Start-up funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daewon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, M., McCollister, B. & Park, D. Highly Bactericidal Polyurethane Effective Against Both Normal and Drug-Resistant Bacteria: Potential Use as an Air Filter Coating. Appl Biochem Biotechnol 178, 1053–1067 (2016). https://doi.org/10.1007/s12010-015-1928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1928-0

Keywords

Navigation