Skip to main content
Log in

DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8–31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93–32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52–25.53 % and 13.33–25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rathore, M. S., Shekhawat, S., Kaur, G., Singh, R. P., & Shekhawat, N. S. (2012). Micropropagation of vegetable rennet (Withania coagulans [Stocks] Dunal)—a critically endangered medicinal plant. Journal of Sustainable Forestry, 31(8), 727–746.

    Article  Google Scholar 

  2. Us-Camas, R., Rivera-Solıs, G., Duarte-Ake, F., & De-la-Pena, C. (2014). In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue and Organ Culture, 118, 187–201.

    Article  CAS  Google Scholar 

  3. Rathore, M. S., Mastan, S. G., & Agarwal, P. K. (2015). Evaluation of DNA methylation using methylation-sensitive amplification polymorphism in plant tissues grown in vivo and in vitro. Plant Growth Regulation, 75, 11–19.

    Article  CAS  Google Scholar 

  4. Fraga, M. M., Canal, M. J., & Rodriguez, R. (2002). Phase-change related epigenetic and physiological changes in Pinus radiata D. Don. Planta, 215, 672–678.

    Article  CAS  Google Scholar 

  5. Kaeppler, S. M., Kaeppler, H. F., & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology, 43, 179–188.

    Article  CAS  Google Scholar 

  6. Golyasnaya, N., & Tsvetkova, N. (2006). Mismatch repair. Molecular Biology, 40, 183–193.

    Article  CAS  Google Scholar 

  7. Vanyushin, B. F., & Ashapkin, V. V. (2011). DNA methylation in higher plants: past, present and future. BBA - Gene Regulatory Mechanism, 1809(8), 360–368.

    CAS  Google Scholar 

  8. Mastan, S. G., Rathore, M. S., Bhatt, V. D., Yadav, P., & Chikara, J. (2012). Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress. Gene, 508, 125–129.

    Article  CAS  Google Scholar 

  9. Valledor, L., Hasbun, R., Meijon, M., et al. (2007). Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue and Organ Culture, 91(2), 75–86.

    Article  CAS  Google Scholar 

  10. Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713–3725.

    Article  CAS  Google Scholar 

  11. Krishnan, P. R., & Paramathma, M. (2009). Potentials of Jatropha species wealth of India. Current Science, 97(7), 1000–1004.

    Google Scholar 

  12. Huang, H., Han, S. S., Wang, Y., Zhang, X. Z., & Han, Z. H. (2012). Variations in leaf morphology and DNA methylation following in vitro culture of Malus xiaojinensis. Plant Cell Tissue and Organ Culture, 111(2), 153–161.

    Article  CAS  Google Scholar 

  13. Johannes, F., Porcher, E., Teixeira, F. K., Saliba-Colombani, V., Simon, M., et al. (2009). Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics, 5(6), e1000530.

    Article  Google Scholar 

  14. Wang, Q. M., Wang, Y. Z., Sun, L. L., Gao, F. Z., Sun, W., et al. (2012). Direct and indirect organogenesis of Clivia miniata and assessment of DNA methylation changes in various regenerated plantlets. Plant Cell Report, 31, 1283–1296.

    Article  CAS  Google Scholar 

  15. Gonzalez, A., Saiz, A., Acedo, A., Ruiz, M., & Polanco, C. (2013). Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.). Plant Growth Regulation, 70(3), 227–236.

    Article  CAS  Google Scholar 

  16. Rival, A., Ilbert, P., Labeyrie, A., Torres, E., Doulbeau, S., et al. (2013). Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Report, 32(3), 359–368.

    Article  CAS  Google Scholar 

  17. Murashige, T., & Skoog, F. A. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–479.

    Article  CAS  Google Scholar 

  18. Rathore, M. S., Yadav, P., Mastan, S. G., Prakash, C. R., Singh, A., et al. (2014). Evaluation of genetic homogeneity in tissue culture regenerates of Jatropha curcas L. using Flow cytometer and DNA-based molecular markers. Applied Biochemistry and Biotechnology, 172, 298–310.

    Article  CAS  Google Scholar 

  19. Park, S. Y., Murthy, H. N., Chakrabarthy, D., & Paek, K. Y. (2009). Detection of epigenetic variation in tissue-culture-derived plants of Doritaenopsis by methylation-sensitive amplification polymorphism (MSAP) analysis. In Vitro Cellular and Developmental Biology – Plant, 45, 104–108.

    Article  CAS  Google Scholar 

  20. Arnholdt-Schmitt, B., Herterich, S., & Neumann, K. H. (1995). Physiological aspects of genome variability in tissue culture. I. Growth phase-dependent differential DNA methylation of the carrot genome (Daucus carota L.) during primary culture. Theoretical and Applied Genetics, 91, 809–815.

    CAS  Google Scholar 

  21. Taskin, K. M., Özbilen, A., Sezer, F., Çördük, N., & Erden, D. (2015). Determination of the expression levels of DNA methyltransferase genes during a highly efficient regeneration system via shoot organogenesis in the diploid apomict Boechera divaricarpa. Plant Cell Tissue and Organ Culture, 1–9. DOI: 10.1007/s11240-014-0704-0

  22. Vanyushin, B. F., & Kirnos, M. D. (1988). DNA methylation in plants. Gene, 74(1), 117–121.

    Article  CAS  Google Scholar 

  23. Vlasova, T. I., Demidenko, Z. N., Kirnos, M. D., & Vanyushin, B. F. (1995). In vitro DNA methylation by wheat nuclear cytosine DNA methyltransferase: effect of phytohormones. Gene, 157(1–2), 279–281.

    Article  CAS  Google Scholar 

  24. Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J., & Biere, A. (2010). Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytologist, 185, 1108–1118.

    Article  CAS  Google Scholar 

  25. Goodrich, J., & Tweedie, S. (2002). Remembrance of things past: chromatin remodeling in plant development. Annual Review of Cell and Developmental Biology, 18, 707–746.

    Article  CAS  Google Scholar 

  26. Finnegan, E. J., Peacock, W. J., & Dennis, E. S. (2000). DNA methylation, a key regulator of plant development and other processes. Current Opinion in Genetics and Development, 10, 217–223.

    Article  CAS  Google Scholar 

  27. Brautigam, K., Vining, K. J., Lafon-Placette, C., Fossdal, C. G., Mirouze, M., et al. (2013). Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 3(2), 399–415.

    Article  Google Scholar 

  28. Li, X., Xu, M., & Korban, S. S. (2000). DNA methylation profiles differ between field- and in vitro-grown leaves of apple. Journal of Plant Physiology, 159(11), 1229–1234.

    Article  Google Scholar 

  29. Gonzalo, S. (2010). Epigenetic alterations in aging. Journal of Applied Physiology, 109, 586–597.

    Article  CAS  Google Scholar 

  30. Grant-Downton, R. T., & Dickinson, H. G. (2005). Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of Botany, 96, 1143–1164.

    Article  CAS  Google Scholar 

  31. Grant-Downton, R. T., & Dickinson, H. G. (2006). Epigenetics and its implications for plant biology 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Annals of Botany, 97, 11–27.

    Article  CAS  Google Scholar 

  32. Phillips, R. L., Kaeppler, S. M., & Olhoft, P. (1994). Genetic instability of plant tissue cultures: breakdown of normal controls. Proceedings of the National Academy of Sciences USA, 91, 5222–5226.

    Article  CAS  Google Scholar 

  33. Madlung, A., Tyagi, A. P., Watson, B., Jiang, H., Kagochi, T., et al. (2005). Genomic changes in synthetic Arabidopsis polyploids. The Plant Journal, 41, 221–230.

    Article  CAS  Google Scholar 

  34. Chen, L., & Chen, J. (2008). Changes of cytosine methylation induced by wide hybridization and allopolyploidy in Cucumis. Genome, 51, 789–799.

    Article  CAS  Google Scholar 

  35. Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., et al. (2001). Mobilization of transposons by a mutation Abolishing full DNA methylation in Arabidopsis. Nature, 411, 212–214.

    Article  CAS  Google Scholar 

  36. Singer, T., Yordan, C., & Martienssen, R. A. (2001). Robertson’s mutator transposons in A. thaliana are regulated by the chromatin-re-modelling gene Decrease in DNA Methylation (DDM1). Genes and Development, 15, 591–602.

    Article  CAS  Google Scholar 

  37. Baysan, M., Woolard, K., Bozdag, S., Riddick, G., Kotliarova, S., et al. (2014). Micro-environment causes reversible changes in DNA methylation and mRNA expression profiles in patient-derived Glioma stem cells. PLoS ONE, 9(4), e94045.

    Article  Google Scholar 

  38. Baránek, M., Čechová, J., Raddová, J., Holleinová, V., Ondrušíková, E., & Pidra, M. (2015). Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy. PLoS ONE, 10(5), e0126638.

    Article  Google Scholar 

  39. Yi, C., Zhang, S., Liu, X., Bui, H. T. N., & Hong, Y. (2010). Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biology, 10, 259.

    Article  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI communication number: 130/2014.

The authors acknowledge the financial support from CSIR, New Delhi (India).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mangal S. Rathore or Bhavanath Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPG 107 kb)

ESM 2

(JPG 99 kb)

ESM 3

(PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, M.S., Jha, B. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers. Appl Biochem Biotechnol 178, 1002–1014 (2016). https://doi.org/10.1007/s12010-015-1924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1924-4

Keywords

Navigation