Skip to main content

Advertisement

Log in

Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent—A Study Using Soybean Plants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60–70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33–100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Şensöz, S., Angın, D., & Yorgun, S. (2000). Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass and Bioenergy, 19, 271–279.

    Article  Google Scholar 

  2. Sydney, E. B., Larroche, C., Novak, A. C., Nouaille, R., Sarma, S. J., et al. (2014). Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresource Technology, 159, 380–386.

    Article  CAS  Google Scholar 

  3. Venkateswar, R. M., Amulya, K., Rohit, M. V., Sarma, P. N., & Venkata, M. S. (2014). Valorization of fatty acid waste for bioplastics production using Bacillus tequilensis: integration with dark-fermentative hydrogen production process. International Journal of Hydrogen Energy, 39, 7616–7626.

    Article  Google Scholar 

  4. Fang, H. H., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87–93.

    Article  CAS  Google Scholar 

  5. Mardad, I., Serrano, A., & Soukri, A. (2013). Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research, 7, 626–635.

    CAS  Google Scholar 

  6. Zhu, H. J., Sun, L. F., Zhang, Y. F., Zhang, X. L., & Qiao, J. J. (2012). Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresource Technology, 111, 410–416.

    Article  CAS  Google Scholar 

  7. Pott, R. W. M., Howe, C. J., & Dennis, J. S. (2014). The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresource Technology, 152, 464–470.

    Article  CAS  Google Scholar 

  8. Zhou, Y., Nie, K., Zhang, X., Liu, S., Wang, M., et al. (2014). Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresource Technology, 163, 48–53.

    Article  CAS  Google Scholar 

  9. Santibáñez, C., Varnero, M. T., & Bustamante, M. (2011). Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: a review. Chilean Journal of Agricultural Research, 71, 469–475.

    Article  Google Scholar 

  10. Pott, R. W. M., Howe, C. J., & Dennis, J. S. (2013). Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds. Bioresource Technology, 130, 725–730.

    Article  CAS  Google Scholar 

  11. Sarma, S. J., Brar, S. K., Le Bihan, Y., Buelna, G., & Soccol, C. R. (2013). Hydrogen production from meat processing and restaurant waste derived crude glycerol by anaerobic fermentation and utilization of the spent broth. Journal of Chemical Technology and Biotechnology, 88, 2264–2271.

    Article  CAS  Google Scholar 

  12. Sarma, S. J., Brar, S. K., Le Bihan, Y., Buelna, G., & Soccol, C. R. (2014). Mitigation of the inhibitory effect of soap by magnesium salt treatment of crude glycerol—a novel approach for enhanced biohydrogen production from the biodiesel industry waste. Bioresource Technology, 151, 49–53.

    Article  CAS  Google Scholar 

  13. https://uwlab.soils.wisc.edu/files/procedures/DNR_TotalP.pdf (accessed on 02/04/2014).

  14. Murphy, J., & Riley, J. (1958). A single-solution method for the determination of soluble phosphate in sea water. Journal of the Marine Biological Association of the UK, 37, 9–14.

    Article  CAS  Google Scholar 

  15. Sarma, S. J., Brar, S. K., Le Bihan, Y., & Buelna, G. (2013). Liquid waste from bio-hydrogen production—a commercially attractive alternative for phosphate solubilizing bio-fertilizer. International Journal of Hydrogen Energy, 38, 8704–8707.

    Article  CAS  Google Scholar 

  16. Ngo, T. A., Kim, M. S., & Sim, S. J. (2011). High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. International Journal of Hydrogen Energy, 36, 5836–5842.

    Article  CAS  Google Scholar 

  17. Kumar, V., & Singh, K. (2001). Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technology, 76, 173–175.

    Article  CAS  Google Scholar 

  18. Salehi, M., Ashiri, F., & Salehi, H. (2008). Effect of different ethanol concentrations on seed germination of three turfgrass genera. Advances in Natural and Applied Science, 2, 6–9.

    Google Scholar 

  19. Rosa, P. R. F., Santos, S. C., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Bioresource Technology, 161, 10–19.

    Article  CAS  Google Scholar 

  20. Foglia, D., Wukovits, W., Friedl, A., De Vrije, T., & Claassen, P. (2011). Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances. Chemical Engineering Transaction, 25, 815–820.

    Google Scholar 

  21. Brannon-Peppas, L. (1995). Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. International Journal of Pharmaceutics, 116, 1–9.

    Article  CAS  Google Scholar 

  22. Han, W., Liu, D. N., Shi, Y. W., Tang, J. H., Li, Y. F., & Ren, N. Q. (2015). Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresource Technology, 180, 54–58.

    Article  CAS  Google Scholar 

  23. Han, W., Ye, M., Zhu, A. J., Zhao, H. T., & Li, Y. F. (2015). Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresource Technology, 191, 24–29.

    Article  CAS  Google Scholar 

  24. Delorme, T., Angle, J., Coale, F., & Chaney, R. (2000). Phytoremediation of phosphorus-enriched soils. International Journal of Phytoremediation, 2, 173–181.

    Article  CAS  Google Scholar 

  25. Ryan, VAA., Gaston, L., Cooper, D. and Stephens, M. (2006). Phytoremediation of a high phosphorus soil by summer and winter hay harvest. Louisiana State University.

  26. Gotcher, M. J., Zhang, H., Schroder, J. L., & Payton, M. E. (2014). Phytoremediation of soil phosphorus with crabgrass. Agronomy Journal, 106, 528–536.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Centre de Recherche Industrielle du Québec (CRIQ), and Institut National de la Recherche Scientifique (INRS) - Centre Eau, Terre & Environnement (ETE) Canada have been acknowledged for financial support. The authors are also thankful to “merit scholarship program for foreign students (Fonds Québécois de la Recherche sur la Nature et les Technologies)” for financial assistance to S. J. Sarma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, S.J., Brar, S.K., LeBihan, Y. et al. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent—A Study Using Soybean Plants. Appl Biochem Biotechnol 178, 865–875 (2016). https://doi.org/10.1007/s12010-015-1914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1914-6

Keywords

Navigation