Skip to main content

Advertisement

Log in

Endogenous and Exogenous Calcium Involved in the Betulin Production from Submerged Culture of Phellinus linteus Induced by Hydrogen Sulfide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Using pharmacological and biochemical approaches, Ca2+ involved in the betulin production in mycelia of Phellinus linteus induced by hydrogen sulfide (H2S) were investigated. The results showed that 2 mM H2S donor NaHS or 10 mM CaCl2 was found to enhance the betulin content in the mycelia of Phellinus to the maximum, which were 112.43 and 93.24 % higher than that in the control, respectively. Further, NaHS and CaCl2 co-treatment also showed positive outcome, which were 128.95 or 24.52 % higher than that in the control or NaHS treatment. At the same time, NaHS also enhanced the content of Ca2+ and CaM. But, the above positive inductive effects for Ca2+, CaM, and betulin production can be blocked with either Ca2+ channel blocker (LaCl3, 2-aminoethoxydiphenyl borate) or Ca2+ chelator (ethylenediaminetetraacetic acid (EDTA)). Among of them, betulin content was reduced 35.06 % by NaHS and EGTA to the minimum, and this reduction could be reversed by the application of CaCl2 (NaHS + EGTA + CaCl2). From above results, it can be concluded that endogenous and exogenous calcium involved in the betulin production from submerged culture of P. linteus induced by hydrogen sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elisashvili, V. (2012). Submerged cultivation of medicinal mushrooms: bioprocesses and products. International Journal of Medicinal Mushrooms, 14(3), 211–239.

    Article  CAS  Google Scholar 

  2. Zhang, J. M., Zhong, J. J., & Geng, A. N. (2014). Improvement of ganoderic acid production by fermentation of Ganoderma lucidum with cellulase as an elicitor. Process Biochemistry, 49(10), 1580–1586.

    Article  CAS  Google Scholar 

  3. Reis, F. S., Barreira, J. C. M., Calhelha, R. C., Griensven, L. J. I. D., Ćirić, A., Glamočlija, J., Soković, M., & Ferreira, I. C. F. R. (2014). Chemical characterization of the medicinal mushroom Phellinus linteus (Berkeley & Curtis) Teng and contribution of different fractions to its bioactivity. LWT–Food Science and Technology, 58(2), 478–485.

    CAS  Google Scholar 

  4. Lee, Y. S., Kim, Y. H., Shin, E. K., Kim, D. H., Lim, S. S., Lee, J. Y., & Kim, J. K. (2010). Anti-angiogenic activity of methanol extract of Phellinus linteus and its fractions. Journal of Ethnopharmacology, 131(1), 56–62.

    Article  Google Scholar 

  5. Alakurtti, S., Mäkelä, T., Koskimies, S., & Yli-Kauhaluoma, J. (2006). Pharmacological properties of the ubiquitous natural product betulin. European Journal of Pharmaceutical Sciences, 29(1), 1–13.

    Article  CAS  Google Scholar 

  6. Bori, I. D., Hung, H. Y., Qian, K., Chen, C. H., Morris-Natschke, S. L., & Lee, K. H. (2012). Anti-AIDS agents 88. Anti-HIV conjugates of betulin and betulinic acid with AZT prepared via click chemistry. Tetrahedron Letters, 53(15), 1987–1989.

    Article  CAS  Google Scholar 

  7. Zhao, F. Q., Mai, Q. Q., Ma, J. H., Xu, M., Wang, X., Cui, T. T., Qiu, F., & Han, G. (2015). Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia, 101, 34–40.

    Article  CAS  Google Scholar 

  8. Sun, M. L. (2014). Preliminary study on mechanism of triterpenoids accumulation induced by hydrogen sulfide in Phellinus mycelium. Master thesis, Northeast Forestry University, Harbin, China.

  9. Kabil, O., Vitvitsky, V., & Banerjee, R. (2014). Sulfur as a signaling nutrient through hydrogen sulfide. Annual Review Nutration, 34, 171–205.

    Article  CAS  Google Scholar 

  10. Chen, A. W., Zeng, G. M., Chen, G. Q., Zhang, C., Yan, M., Shang, C., Hu, X. J., Lu, L. H., Chen, M., Guo, Z., & Zuo, Y. N. (2014). Hydrogen sulfide alleviates 2, 4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium. Chemosphere, 109, 208–212.

    Article  CAS  Google Scholar 

  11. Hancock, J. T., & Whiteman, M. (2014). Hydrogen sulfide and cell signaling: team player or referee? Plant Physiology and Biochemistry, 78, 37–42.

    Article  CAS  Google Scholar 

  12. Fang, H., Jing, T., Liu, Z., Zhang, L., Jin, Z., & Pei, Y. (2014). Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium, 56(6), 472–481.

    Article  CAS  Google Scholar 

  13. Christou, A., Manganaris, G. A., Papadopoulos, I., & Fotopoulos, V. (2013). Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. Journal of Experimental Botany, 64(7), 1953–1966.

    Article  CAS  Google Scholar 

  14. Dodd, A. N., Kudla, J., & Sanders, D. (2010). The language of calcium signaling. Annual Review of Plant Biology, 61, 593–620.

    Article  CAS  Google Scholar 

  15. Tuteja, N., & Mahajan, S. (2007). Calcium signaling network in plants. Plant Signal Behavior, 2(2), 79–85.

    Article  Google Scholar 

  16. Kudla, J., Batistič, O., & Hashimoto, K. (2010). Calcium signals: the lead currency of plant information processing. Plant Cell, 22, 541–563.

    Article  CAS  Google Scholar 

  17. Guo, H. B., Zhu, N., Deyholos, M. K., Liu, J., Zhang, X. R., & Dong, J. E. (2015). Calcium mobilization in salicylic acid-induced salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid. Applied Biochemistry and Biotechnology, 175, 2689–2702.

    Article  CAS  Google Scholar 

  18. Munarona, L., Avanzatoa, D., Mocciad, F., & Mancardie, D. (2013). Hydrogen sulfide as a regulator of calcium channels. Cell Calcium, 53(2), 77–84.

    Article  Google Scholar 

  19. Fan, G. Z., Liu, Y. T., Wang, X. D., & Zhan, Y. G. (2014). Cross-talk of polyamines and nitric oxide in endophytic fungus-induced betulin production in Betula platyphylla plantlets. Trees, 28, 635–641.

    Article  CAS  Google Scholar 

  20. Liao, W. B., Zhang, M. L., Huang, G. B., & Yu, J. H. (2012). Ca2+ and CaM are involved in NO- and H2O2-induced adventitious root development in marigold. Journal of Plant Growth Regulation, 31, 253–264.

    Article  CAS  Google Scholar 

  21. Wasser, S. P. (2011). Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Applied Microbiology and Biotechnology, 89, 1323–1332.

    Article  CAS  Google Scholar 

  22. Zhua, L. W., Zhong, J. J., & Tang, Y. J. (2008). Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum. Process Biochemistry, 43(12), 1359–1370.

    Article  Google Scholar 

  23. Xu, Y. N., & Zhong, J. J. (2012). Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnology Advances, 30(6), 1301–1308.

    Article  CAS  Google Scholar 

  24. Dörnenburg, H., & Knorr, D. (1995). Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology, 17(8), 674–684.

    Article  Google Scholar 

  25. Patel, H., & Krishnamurthy, R. (2013). Elicitors inplant tissue culture. Journal of Pharmacognosy and Phytochemistry, 2(2), 60–65.

    CAS  Google Scholar 

  26. Lecourieux, D., Ranjeva, R., & Pugin, A. (2006). Calcium in plant defence-signalling pathways. New Phytologist, 171, 249–269.

    Article  CAS  Google Scholar 

  27. Martins, T. V., Evans, M. J., Woolfenden, H. C., & Morris, R. J. (2013). Towards the physics of calcium signalling in plants. Plants, 2, 541–588.

    Article  CAS  Google Scholar 

  28. Yang, T. B., Peng, H., & Bauchan, G. R. (2014). Functional analysis of tomato calmodulin gene family during fruit development and ripening. Horticulture Research. doi:10.1038/hortres.2014.57.

    Google Scholar 

  29. Wen, R. B., Sui, Z. H., Bao, Z. M., Zhou, W., & Wang, C. Y. (2014). Isolation and characterization of calmodulin gene of Alexandrium catenella (Dinoflagellate) and its performance in cell growth and heat stress. Journal of Ocean University China, 13(2), 290–296.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2572015EA01), the National Natural Science Foundation of China (31100445), and Harbin Technological Innovation Special Fund research projects (2014RFQXJ066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhi Fan.

Additional information

Duan Jian and Meiling Sun contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Table 1

Differential expression genes of terpenoid backbone biosynthesis in Phellinus linteus responsed to H2S treatment (DOC 38 kb)

Supplement Table 2

Differential expression of Ca2+ related genes in Phellinus linteus responded to H2S treatment (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Jian, D., Sun, M. et al. Endogenous and Exogenous Calcium Involved in the Betulin Production from Submerged Culture of Phellinus linteus Induced by Hydrogen Sulfide. Appl Biochem Biotechnol 178, 594–603 (2016). https://doi.org/10.1007/s12010-015-1896-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1896-4

Keywords

Navigation