Skip to main content
Log in

Enantioselective Resolution of (±)-1-Phenylethanol and (±)-1-Phenylethyl Acetate by a Novel Esterase from Bacillus sp. SCSIO 15121

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel microbial esterase BSE01281 identified from the Indian Ocean was cloned, expressed, and functionally characterized. Esterase BSE01281 could enanoselectively resolve (±)-1-phenylethanol and (±)-1-phenylethyl acetate through two types of enzymatic reactions. After the optimization of enzymatic reactions, BSE01281 could efficiently generate (R)-1-phenylethyl acetate with high enantiomeric excess (>99 %) and high conversion (42 %) after 96 h trans-esterification reactions. Additionally, BSE01281 could also produce (R)-1-phenylethanol (e.e. > 99 %) and (S)-1-phenylethyl acetate (e.e. > 95 %) at a conversion of 49 % through direct hydrolysis of inexpensive racemic 1-phenylethyl acetate for 8 h. Optically pure (R)-1-phenylethanol generated from direct enzymatic hydrolysis of racemic 1-phenylethyl acetate by BSE01281 is not easily prepared by dehydrogenases, which generally follow the “Prelog’s rule” and give (S)-1-phenylethanol instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patel, R. N. (2002). Microbial/enzymatic synthesis of chiral intermediates for pharmaceuticals. Enzyme and Microbial Technology, 31(6), 804–826.

    Article  CAS  Google Scholar 

  2. Noyori, R., & Kitamura, M. (1991). Enantioselective addition of organometallic reagents to carbonyl compounds: chirality transfer, multiplication, and amplification. Chemestry International Editon in English, 30(1), 49–69.

    Article  Google Scholar 

  3. Habulin, M., & Knez, Ž. (2009). Optimization of (R, S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 58(1–4), 24–28.

    Article  CAS  Google Scholar 

  4. Cheng, C., & Ma, J. H. (1996). Enantioselective synthesis of s-(−)-1-phenylethanol in Candida utilis semi-fed-batch cultures. Process Biochemistry, 31(6), 119–124.

    Article  CAS  Google Scholar 

  5. Schöfer, S. H., Kaftzik, N., Wasserscheid, P., & Kragl, U. (2001). Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem. Commun. 425–426

  6. Ma, J., Wu, L., Guo, F., Gu, J., Tang, X., Jiang, L., Liu, J., Zhou, J., & Yu, H. (2013). Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Applied Microbiology Biotech, 97(11), 4897–4906.

    Article  CAS  Google Scholar 

  7. Bora, L., & Kalita, M. C. (2008). Production of thermostable alkaline lipase on vegetable oils from a thermophilic Bacillus sp. DH4, characterization and its potential applications as detergent additive. Journal Chemestry Technology Biotech, 83(5), 688–693.

    Article  CAS  Google Scholar 

  8. Sun, S. Y., Xu, Y., & Wang, D. (2009). Purification and biochemical characterization of an intracellular lipase by Rhizopus chinensis under solid-state fermentation and its potential application in the production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Journal Chemestry Technology Biotech, 84(3), 435–441.

    Article  CAS  Google Scholar 

  9. Sangeetha, R., Arulpandi, I., & Geetha, A. (2011). Bacterial lipases as potential industrial biocatalysts: an overview. Research Journal of Microbiology, 6(1), 1–24.

    Article  CAS  Google Scholar 

  10. Wang, J. Y., Ma, C. L., Bao, Y. M., & Xu, P. S. (2012). Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R, S)-1-phenylethanol. Enzyme Microbial Technology, 51(1), 40–46.

    Article  CAS  Google Scholar 

  11. Ma, L., Liu, X. M., Li, D. G., & Zhang, Z. H. (2011). (R)-1-phenylethanol production from racemic 1- phenylethanol by double strains redox-coupling. Advances in Materials Research, 236–238, 981–985.

    Article  Google Scholar 

  12. Chua, L. S., & Sarmidi, M. R. (2004). Immobilised lipase-catalysed resolution of (R, S)-1-phenylethanol in recirculated packed bed reactor. Journal of Molecular Catalysis B: Enzymatic, 28(2–3), 111–119.

    Article  CAS  Google Scholar 

  13. Huang, H. R., Xu, J. H., Xu, Y., Pan, J., & Liu, X. (2005). Preparation of (S)-mandelic acids by enantioselective degradation of racemates with a new isolate Pseudomonas putida ECU1009. Tetrahedron: Asymmetry, 16(12), 2113–2117.

    Article  CAS  Google Scholar 

  14. Xiao, M. T., Huang, Y. Y., Ye, J., & Guo, Y. H. (2008). Study on the kinetic characteristics of the asymmetric production of R-(−)-mandelic acid with immobilized Saccharomyces cerevisiae FD11b. Biochemical Engineering Journal, 39(2), 311–318.

    Article  CAS  Google Scholar 

  15. Mandal, D., Ahmad, A., Khan, M. I., & Kumar, R. (2004). Enantioselective bioreduction of acetophenone and its analogous by the fungus Trichothecium sp. Journal of Molecular Catalysis B: Enzymatic, 27(2–3), 61–63.

    Article  CAS  Google Scholar 

  16. Monteiro, J., Braun, J., & Goffic, F. L. (1990). A practical synthesis of (R) and (S) 3-hydroxyglutaric acid monoesters by enzymatic hydrolysis with a bacterial esterase. Synthetic Communications, 20(3), 315–319.

    Article  CAS  Google Scholar 

  17. Yang, H., Henke, E., & Bornscheuer, U. T. (1999). Highly efficient double enantioselection by lipase-catalyzed transesterification of (R, S)-carboxylic acid vinyl esters with (RS)-1-phenylethanol. Tetrahedron: Asymmetry, 10(5), 957–960.

    Article  CAS  Google Scholar 

  18. Hoffmann, I., Silva, V. D., & Nascimento, M. D. G. (2011). Enantioselective resolution of (R, S)-1-phenylethanol catalyzed by lipases immobilized in starch films. Journal of the Brazilian Chemical Society, 22(8), 1559–1567.

    Article  CAS  Google Scholar 

  19. Cao, Y., Zhuang, Y., Yao, C., Wu, B., & He, B. (2012). Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochemical Engineering Journal, 64, 55–60.

    Article  CAS  Google Scholar 

  20. Chen, C. S., Fujimoto, Y., Girdaukas, G., & Sih, C. J. (1982). Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 104(25), 7294–7299.

    Article  CAS  Google Scholar 

  21. Torres, S., Martínez, M. A., Pandey, A., & Castro, G. R. (2009). An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86. Bioresource Technology., 100(2), 896–902.

    Article  CAS  Google Scholar 

  22. Cherif, S., & Gargouri, Y. (2010). An organic-solvent-tolerant esterase from turkey pharyngeal tissue. Bioresource Technology., 101(10), 3732–3736.

    Article  CAS  Google Scholar 

  23. De, S. C., Tedesco, P., Ambrosino, L., Altermark, B., Willassen, N. P., & De, P. D. (2014). A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl. Biochem. Biotech, 172(6), 3054–3068.

    Google Scholar 

  24. Yele, V. U., & Desai, K. (2015). A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; optimization of media and production conditions using statistical methods. Applied Biochemistry Biotech, 175(2), 855–869.

    Article  CAS  Google Scholar 

  25. Nardini, M., & Dijkst, B. W. (1999). α/β Hydrolase fold enzyme: the family keeps growing. Curr. Opin. Struc. O Biologico, 9(16), 732–737.

    CAS  Google Scholar 

  26. Rozeboom, H. J., Godinho, L. F., Nardini, M., Quax, W. J., & Dijkstra, B. W. (2014). Crystal structures of two Bacillus carboxylesterases with different enantioselectivities. BBA-Proteins Proteom, 1844(3), 567–575.

    Article  CAS  Google Scholar 

  27. Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 343, 177–183.

    Article  CAS  Google Scholar 

  28. Vandenberghe, A., Markó, I. E., Lucaccioni, F., & Lutts, S. (2013). Enantioselective hydrolysis of racemic 1-phenylethyl acetate by an enzymatic system from fresh vegetables. Industrial Crops and Products, 42, 380–385.

    Article  CAS  Google Scholar 

  29. Fan, Y., Xie, Z., Zhang, H., & Qian, J. (2011). Kinetic resolution of both 1-phenylethanol enantiomers produced by hydrolysis of 1-phenylethyl acetate with Candida antarctica lipase B in different solvent systems. Kinetics and Catalysis, 52(5), 686–690.

    Article  CAS  Google Scholar 

  30. Rao, L., Xue, Y., Zheng, Y., Lu, J. R., & Ma, Y. (2013). A novel alkaliphilic bacillus esterase belongs to the 13(th) bacterial lipolytic enzyme family. PloS One, 8(4), e60645.

    Article  CAS  Google Scholar 

  31. Karpushova, A., Brümmer, F., Barth, S., Lange, S., & Schmid, R. D. (2005). Cloning, recombinant expression and biochemical characterisation of novel esterases from Bacillus sp. associated with the marine sponge Aplysina aerophoba. Applied Microbiol Biotech, 67(1), 59–69.

    Article  CAS  Google Scholar 

  32. Maqbool, Q.-U.-A., Johri, S., Rasool, S., Riyaz-ul-Hassan, S., Verma, V., Nargotra, A., Koul, S., & Qazi, G. N. (2006). Molecular cloning of carboxylesterase gene and biochemical characterization of encoded protein from Bacillus subtilis (RRL BB1). Journal of Biotechnology, 125(1), 1–10.

    Article  CAS  Google Scholar 

  33. Simoes, D. D. C. M., McNeill, D., Kristiansen, B., & Mattey, M. (1997). Purification and partial characterisation of a 1.57 kDa thermostable esterase from Bacillus stearothermophilus. FEMS Microbiology Letters, 147(1), 151–156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial supports from National Natural Science Foundation of China (no. 21302199) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030404) and Project “Engineering High-Performance Microorganisms for Advanced Bio-Based Manufacturing” from the Chinese Academy of Sciences (KGZD-EW-606) and Guangzhou Science and Technology Plan Projects (201510010012). We also would like to thank the constant help from Professor Jianhua Ju and Professor Changsheng Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zhang, Y., Sun, A. et al. Enantioselective Resolution of (±)-1-Phenylethanol and (±)-1-Phenylethyl Acetate by a Novel Esterase from Bacillus sp. SCSIO 15121. Appl Biochem Biotechnol 178, 558–575 (2016). https://doi.org/10.1007/s12010-015-1894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1894-6

Keywords

Navigation