Skip to main content
Log in

Physicochemical Biomolecular Insights into Buffalo Milk-Derived Nanovesicles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Milk is a natural nutraceutical produced by mammals. The nanovesicles of milk play a role in horizontal gene transfer and confer health-benefits to milk consumers. These nanovesicles contain miRNA, mRNA, and proteins which mediate the intercellular communication. In this work, we isolated and characterized the buffalo milk-derived nanovesicles by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), scanning electron microscopy (SEM), Western probing, and Fourier transform infrared (FTIR) spectroscopy. The DLS data suggested a bimodal size distribution with one mode near 50 nm and the other around 200 nm for the nanovesicles. The NTA and SEM data also supported the size of nanovesicles within a range of 50–200 nm. The FTIR measurements of nanovesicles identified some prominent absorption bands attributable to the proteins (1300–1700 cm−1, amide A and amide B bands), lipids (2800–3100 cm−1), polysaccharides, and nucleic acids (900–1200 cm−1). The comparative expression profiles of immune miRNA signatures (miR-15b, miR-21, miR-27b, miR-125b, miR-155, and miR-500) in nanovesicles isolated from milk, serum, and urine revealed that these miRNAs are present abundantly (P < 0.05) in milk-derived nanovesicles. Milk miRNAs (miR-21 and 500) that were also found stable under different household storage conditions indicated that these could be biologically available to milk consumers. Overall, nanovesicles are a new class of bioactive compounds from buffalo milk with high proportion of stable immune miRNAs compared to urine and plasma of same animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rani, S., O'Brien, K., Kelleher, F. C., Corcoran, C., Germano, S., Radomski, M. W., Crown, J., & O'Driscoll, L. (2011). Isolation of exosomes for subsequent mRNA, MicroRNA, and protein profiling. Methods in Molecular Biology, 784, 181–95.

    Article  CAS  Google Scholar 

  2. Johnstone, R. M., Bianchini, A., & Teng, K. (1989). Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood, 74, 1844–51.

    CAS  Google Scholar 

  3. Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., & Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 183, 1161–72.

    Article  CAS  Google Scholar 

  4. Bodey, B., Bodey, B., & Jr Kaiser, H. E. (1997). Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In Vivo, 11, 351–70.

    CAS  Google Scholar 

  5. Blanchard, N., Lankar, D., Faure, F., Regnault, A., Dumont, C., Raposo, G., & Hivroz, C. (2002). TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. Journal of Immunology, 168, 3235–41.

    Article  CAS  Google Scholar 

  6. Andre, F., Schartz, N. E., Movassagh, M., Flament, C., Pautier, P., Morice, P., Pomel, C., Lhomme, C., Escudier, B., Le Chevalier, T., Tursz, T., Amigorena, S., Raposo, G., Angevin, E., & Zitvogel, L. (2002). Malignant effusions and immunogenic tumour derived exosomes. Lancet, 360, 295–305.

    Article  CAS  Google Scholar 

  7. Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–20.

    Article  CAS  Google Scholar 

  8. Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of Cell Biology, 200, 373–83.

    Article  CAS  Google Scholar 

  9. Okoye, I. S., Coomes, S. M., Pelly, V. S., Czieso, S., Papayannopoulos, V., Tolmachova, T., Seabra, M. C., & Wilson, M. S. (2014). MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper1 cells. Immunity, 41, 89–103.

    Article  CAS  Google Scholar 

  10. Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., Galas, D. J., & Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clinical Chemistry, 56(11), 1733–41.

    Article  CAS  Google Scholar 

  11. Keller, S., Ridinger, J., Rupp, A. K., Janssen, J. W., & Altevogt, P. (2011). Body fluid derived exosomes as a novel template for clinical diagnostics. Journal of Translational Medicine, 9, 86.

    Article  CAS  Google Scholar 

  12. Kosaka, N., Izumi, H., Sekine, K., & Ochiya, T. (2010). microRNA as a new immune-regulatory agent in breast milk. Silence, 1, 7.

    Article  Google Scholar 

  13. Baier, S. R., Nguyen, C., Xie, F., Wood, J. R., & Zempleni, J. (2014). MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. The Journal of Nutrition, 144, 1495–500.

    Article  CAS  Google Scholar 

  14. Sokolova, V., Ludwig, A. K., Hornung, S., Rotan, O., Horn, P. A., Epple, M., & Giebel, B. (2011). Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces. B, Biointerfaces, 87, 146–50.

    Article  CAS  Google Scholar 

  15. Sharma, S., Rasool, H. I., Palanisamy, V., Mathisen, C., Schmidt, M., Wong, D. T., & Gimzewski, J. K. (2010). Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM FESEM, and force spectroscopy. ACS Nano, 4, 1921–6.

    Article  CAS  Google Scholar 

  16. Atay, S., Gercel-Taylor, C., Kesimer, M., & Taylor, D. D. (2011). Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells. Experimental Cell Research, 317(8), 1192–202.

    Article  CAS  Google Scholar 

  17. Prado, N., Alché, J. D., Casado-Vela, J., Mas, S., Villalba, M., Rodríguez, R., & Batanero, E. (2014). Nanovesicles are secreted during pollen germination and pollen tube growth: a possible role in fertilization. Molecular Plant, 7, 573–7.

    Article  CAS  Google Scholar 

  18. Clare, D. A., & Swaisgood, H. E. (2000). Bioactive milk peptides: a prospectus. Journal of Dairy Science, 83(6), 1187–95.

    Article  CAS  Google Scholar 

  19. de Carvalho, J. V., De Castro, R. O., Da Silva, E. Z., Silveira, P. P., Da Silva-Januário, M. E., Arruda, E., Jamur, M. C., Oliver, C., Aguiar, R. S., & daSilva, L. L. (2014). Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PloS One, 9, e113691.

    Article  Google Scholar 

  20. Im, H., Shao, H., Park, Y., Peterson, V. M., Castro, C. M., Weissleder, R., & Lee, H. (2014). Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nature Biotechnology, 32, 490–5.

    Article  CAS  Google Scholar 

  21. Mehdiani, A., Maier, A., Pinto, A., Barth, M., Akhyari, P., & Lichtenberg, A. (2015). An innovative method for exosome quantification and size measurement. Journal of Visualized Experiments, 95, 50974.

    Google Scholar 

  22. Nawaz, M., Camussi, G., Valadi, H., Nazarenko, I., Ekström, K., Wang, X., Principe, S., Shah, N., Ashraf, N. M., Fatima, F., Neder, L., & Kislinger, T. (2014). The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nature Reviews. Urology, 11(12), 688–701.

    Article  Google Scholar 

  23. Wu, Y., Deng, W., & Klinke Ii, D. J. (2015). Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst, 140, 6631–42.

    Article  CAS  Google Scholar 

  24. Filipe, V., Hawe, A., & Jiskoot, W. (2010). Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical Research, 27, 796–810.

    Article  CAS  Google Scholar 

  25. Gu, Y., Li, M., Wang, T., Liang, Y., Zhong, Z., Wang, X., Zhou, Q., Chen, L., Lang, Q., He, Z., Chen, X., Gong, J., Gao, X., Li, X., & Lv, X. (2012). Lactation-related microRNA expression profiles of porcine breast milk exosomes. PloS One, 7(8), e43691.

    Article  CAS  Google Scholar 

  26. Lee, C. T., Risom, T., & Strauss, W. M. (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA and Cell Biology, 26(4), 209–18.

    Article  CAS  Google Scholar 

  27. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., & Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769–73.

    Article  CAS  Google Scholar 

  28. Qin, J., & Xu, Q. (2014). Functions and application of exosomes. Acta Poloniae Pharmaceutica, 71(4), 537–43.

    Google Scholar 

  29. Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., Barnes, S., Grizzle, W., Miller, D., & Zhang, H. G. A. (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 18(9), 1606–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Director NDRI, Karnal, for providing the necessary facilities for this study. The authors thank Dr. S. K. Tomar for providing the SEM facility to BV and Dr. Rajan Sharma for allowing VN to use FTIR spectroscopy, and Mark Ware, Kartick Padmanabhan, and Namrata Jain of Malvern Instruments for facilitating the NTA at NDRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheer Singh.

Ethics declarations

Funding

This work was financially supported by the National Agricultural Science Fund (NASF), formerly known as National Fund for Basic, Strategic, and Frontier Application Research in Agriculture (NFBSFARA) (NFBSFARA/BSA-4006/2013-14) and CRP – Nanotechnology of ICAR, India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Authors have taken approval of institute ethical committee for the collection of blood, urine, and milk from the buffaloes of NDRI cattle and buffalo herd for the sake of research work.

Additional information

Vijay Simha Baddela and Varij Nayan are co-first authors and contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baddela, V.S., Nayan, V., Rani, P. et al. Physicochemical Biomolecular Insights into Buffalo Milk-Derived Nanovesicles. Appl Biochem Biotechnol 178, 544–557 (2016). https://doi.org/10.1007/s12010-015-1893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1893-7

Keywords

Navigation