Skip to main content
Log in

Heterologous Expression, Purification, and Biochemical Characterization of α-Humulene Synthase from Zingiber zerumbet Smith

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The α-humulene synthase from Zingiber zerumbet Smith was expressed as a polyhistidine-tagged protein in an E. coli BL21(DE3) strain. Induction time and inductor (isopropyl-β-D-thiogalactopyranoside) concentration were optimized. The enzyme was successfully purified directly from cell lysate by NTA affinity column chromatography and careful selection of coordinated metal ion and imidazole elution conditions. Bioactivity assays were conducted with the natural substrate farnesyl diphosphate (FDP) in a two-phase system with in situ extraction of products. The conversion of FDP to α-humulene (~94.5 %) and β-caryophyllene (~5.5 %) could be monitored by gas chromatography-flame ionization detection (GC-FID). Optimal pH and temperature as well as kinetic parameters K M and k cat were determined using a discontinuous kinetic assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Webster, N. S., Wilson, K. J., Blackall, L. L., & Hill, R. T. (2001). Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied Environmental Microbiology, 67, 434–444.

    Article  CAS  Google Scholar 

  2. Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9, 245–251.

    Article  CAS  Google Scholar 

  3. Kingston, D. G. I. (2011). Modern natural products drug discovery and its relevance to biodiversity conservation. Journal of Natural Products, 74, 496–511.

    Article  CAS  Google Scholar 

  4. Trapp, S. C., & Croteau, R. B. (2001). Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158, 811–832.

    CAS  Google Scholar 

  5. Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66, 212–229.

    Article  CAS  Google Scholar 

  6. McGarvey, D. J., & Croteau, R. B. (1995). Terpenoid metabolism. The Plant Cell, 7, 1015–1026.

    Article  CAS  Google Scholar 

  7. Peters, R. J. (2013). In T. J. Bach & M. Rohmer (Eds.), Isoprenoid synthesis in plants and microorganisms: gibberellin phytohormone metabolism (pp. 233–249). NY: Springer.

    Google Scholar 

  8. Unsicker, S. B., Kunert, G., & Gershenzon, J. (2009). Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Current Opinion in Plant Biology, 12, 479–485.

    Article  CAS  Google Scholar 

  9. Arimura, G., Ozawa, R., Nishioka, T., Boland, W., Koch, T., Kühnemann, F., & Takabayashi, J. (2002). Herbivory-induced leaf volatiles trigger JA-and/or ethylene-dependent activation of ethylene biosynthesis genes in uninfested leaves. The Plant Journal, 29, 87–98.

    Article  CAS  Google Scholar 

  10. Wang, G., Tang, W., & Bidigare, R. R. (2005). In L. Zhang & A. L. Demain (Eds.), Natural products: drug discovery and therapeutic medicine: terpenoids as therapeutic drugs and pharmaceutical agents (pp. 197–227). Totowa, NJ: Humana Press.

    Google Scholar 

  11. Yu, F., Okamto, S., Nakasone, K., Adachi, K., Matsuda, S., Harada, H., Misawa, N., & Utsumi, R. (2008). Molecular cloning and functional characterization of α-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith). Planta, 227, 1291–1299.

    Article  CAS  Google Scholar 

  12. Kader, G., Nikkon, F., Rashid, M. A., & Yeasmin, T. (2011). Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn. Asian Pacific Journal of Tropical Biomedicine, 1, 409–412.

    Article  CAS  Google Scholar 

  13. Habsah, M., Amran, M., Mackeen, M. M., Lajis, N. H., Kikuzaki, H., Nakatani, N., Rahman, A., Ghafar, A., & Ali, A. M. (2000). Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities. Journal of Ethnopharmacology, 72, 403–410.

    Article  CAS  Google Scholar 

  14. Tzeng, T.F., Liou, S.S., Chang, C.J. and Liu, I.M. (2013) The Ethanol Extract of Zingiber zerumbet Attenuates Streptozotocin-Induced Diabetic Nephropathy in Rats. Evidence-Based Complementary and Alternative Medicine. Article ID 340645, 8 pages

  15. Wahab, S. I. A., Abdul, A. B., Yeel, H. C., Alzubain, A. S., Elhassan, M. M., & Syam, M. M. (2008). Anti-tumor activities of analogues derived from the bioactive compound of Zingiber zerumbet. International Journal Of Cancer Research, 4, 154–159.

    Article  CAS  Google Scholar 

  16. Murakami, A., Miyamoto, M., & Ohigashi, H. (2004). Zerumbone, an anti-inflammatory phytochemical, induces expression of proinflammatory cytokine genes in human colon adenocarcinoma cell lines. BioFactors, 21, 95–101.

    Article  CAS  Google Scholar 

  17. Shamoto, T., Matsuo, Y., & Shibata, T. (2014). Zerumbone inhibits angiogenesis by blocking NF-κB activity in pancreatic cancer. Pancreas, 43, 396–404.

    Article  CAS  Google Scholar 

  18. Tewtrakul, S., & Subhadhirasakul, S. (2007). Anti-allergic activity of some selected plants in the Zingiberaceae family. Journal of Ethnopharmacology, 109, 535–538.

    Article  Google Scholar 

  19. Croteau, R. B., Davis, E. M., Ringer, K. L., & Wildung, M. R. (2005). (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften, 92, 562–577.

    Article  CAS  Google Scholar 

  20. Gershenzon, J., Maffei, M., & Croteau, R. B. (1989). Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiology, 89, 1351–1357.

    Article  CAS  Google Scholar 

  21. Yu, F., Okamoto, S., Harada, H., Yamasaki, K., Misawa, N., & Utsumi, R. (2011). Zingiber zerumbet CYP71BA1 catalyzes the conversion of alpha-humulene to 8-hydroxy-alpha-humulene in zerumbone biosynthesis. Cellular and Molecular Life Sciences, 68, 1033–1040.

    Article  CAS  Google Scholar 

  22. Okamoto, S., Yu, F., Harada, H., Okajima, T., Hattan, J. I., Misawa, N., & Utsumi, R. (2011). A short-chain dehydrogenase involved in terpene metabolism from Zingiber zerumbet. FEBS Journal, 27, 2892–2900.

    Article  Google Scholar 

  23. Puigbò, P., Guzmán, E., Romeu, A., & Garcia-Vallvé, S. (2007). OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research, 35, W126–W131.

    Article  Google Scholar 

  24. Eriksen, N. T., Kratchmarova, I., Neve, S., Kristiansen, K., & Iversen, J. J. L. (2001). Automatic inducer addition and harvesting of recombinant Escherichia coli cultures based on indirect on-line estimation of biomass concentration and specific growth rate. Biotechnology and Bioengineering, 75, 335–361.

    Article  Google Scholar 

  25. Hartwig, S., Frister, T., Alemdar, S., Li, Z., Scheper, T., & Beutel, S. (2015). SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides. Biochemical and Biophysical Research Communications, 458, 883–889.

    Article  CAS  Google Scholar 

  26. Frister, T., Hartwig, S., Alemdar, S., Schnatz, K., Thöns, L., Scheper, T., & Beutel, S. (2015). Characterisation of a recombinant patchoulol synthase variant for biocatalytic production of terpenes. Applied Biochemistry and Biotechnology, 176, 2185–2201.

    Article  CAS  Google Scholar 

  27. Mercke, P., Bengtsson, M., Bouwmeester, H. J., Posthumus, M. A., & Brodelius, P. E. (2000). Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Archives of Biochemistry and Biophysics, 381, 173.

    Article  CAS  Google Scholar 

  28. Nieuwenhuizen, N. J., Wang, M. Y., Matich, A. J., Green, S. A., Chen, X., Yauk, Y. K., Beuning, L. L., Nagegowda, D. A., Dudareva, N., & Atkinson, R. G. (2009). Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). Journal of Experimental Botany, 60, 3203–3219.

    Article  CAS  Google Scholar 

  29. Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D. S., & Milo, R. (2011). The moderately efficient enzyme: evolutionary and physico-chemical trends shaping enzyme kinetics. Biochemistry, 50, 4402–4410.

    Article  CAS  Google Scholar 

  30. Crowell, A. L., Williams, D. C., Davis, E. M., Wildung, M. R., & Croteau, R. (2002). Molecular cloning and characterization of a new linalool synthase. Archives of Biochemistry and Biophysics, 405, 112–121.

    Article  CAS  Google Scholar 

  31. Faraldos, J. A., Gonzalez, V., Li, A., Yu, F., Koeksal, M., Christianson, D. W., & Allemann, R. K. (2012). Probing the mechanism of 1,4-conjugate elimination reactions catalyzed by terpene synthases. Journal of the American Chemical Society, 134, 20844–20848.

  32. Agger, S. A., Lopez-Gallego, F., Hoye, T. R., & Schmidt-Dannert, C. (2008). Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. Journal of Bacteriology, 190, 6084–6096.

    Article  CAS  Google Scholar 

  33. Pinedo, C., Wang, C., Pradier, J., Dalmais, B., Choquer, M., Le, P. P., Morgant, G., Collado, I. G., Cane, D. E., & Viaud, M. (2008). Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chemical Biology, 3, 791–801.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the European Regional Development Fund (EFRE): Innovation Network “Refinement of plant resources” (ZW-8-80130940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Beutel.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alemdar, S., Hartwig, S., Frister, T. et al. Heterologous Expression, Purification, and Biochemical Characterization of α-Humulene Synthase from Zingiber zerumbet Smith. Appl Biochem Biotechnol 178, 474–489 (2016). https://doi.org/10.1007/s12010-015-1888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1888-4

Keywords

Navigation