Skip to main content
Log in

Evaluation of Suitable Reference Genes for Normalization of qPCR Gene Expression Studies in Brinjal (Solanum melongena L.) During Fruit Developmental Stages

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Brinjal/eggplant/aubergine is one of the major solanaceous vegetable crops. Recent availability of genome information greatly facilitates the fundamental research on brinjal. Gene expression patterns during different stages of fruit development can provide clues towards the understanding of its biological functions. Quantitative real-time PCR (qPCR) has become one of the most widely used methods for rapid and accurate quantification of gene expression. However, its success depends on the use of a suitable reference gene for data normalization. For qPCR analysis, a single reference gene is not universally suitable for all experiments. Therefore, reference gene validation is a crucial step. Suitable reference genes for qPCR analysis of brinjal fruit development have not been investigated so far. In this study, we have selected 21 candidate reference genes from the Brinjal (Solanum melongena) Plant Gene Indices database (compbio.dfci.harvard.edu/tgi/plant.html) and studied their expression profiles by qPCR during six different fruit developmental stages (0, 5, 10, 20, 30, and 50 days post anthesis) along with leaf samples of the Pusa Purple Long (PPL) variety. To evaluate the stability of gene expression, geNorm and NormFinder analytical softwares were used. geNorm identified SAND (SAND family protein) and TBP (TATA binding protein) as the best pairs of reference genes in brinjal fruit development. The results showed that for brinjal fruit development, individual or a combination of reference genes should be selected for data normalization. NormFinder identified Expressed gene (expressed sequence) as the best single reference gene in brinjal fruit development. In this study, we have identified and validated for the first time reference genes to provide accurate transcript normalization and quantification at various fruit developmental stages of brinjal which can also be useful for gene expression studies in other Solanaceae plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Collonnier, C., Fock, I., Kashyap, V., Rotino, G. L., Daunay, M. C., Lian, Y., et al. (2001). Applications of biotechnology in eggplant. Plant Cell Tissue and Organ Culture, 65, 91–107. doi:10.1023/A: 1010674425536.

    Article  CAS  Google Scholar 

  2. Doganlar, S., Frary, A., Daunay, M. C., Lester, R. N., & Tanksley, S. D. (2002). A comparative genetic linkage map of eggplant (Solanum melongena L.) and its implications for genome evolution in the Solanaceae. Genetics, 161, 1697–1711.

    CAS  Google Scholar 

  3. Kumar, G., Meena, B. L., Kar, R., Tiwari, S. K., Gangopadhyay, K. K., Bisht, I. S., et al. (2008). Morphological diversity in brinjal (Solanum melongena L.) germplasm accessions. Characterization and utilization. Plant Genetic Resources: Characterization and Utilization, 6(3), 232–236. doi:10.1017/S1479262108994211.

    Article  Google Scholar 

  4. Nunome, T., Negoro, S., Kono, I., Kanamori, H., Miyatake, K., Yamaguchi, H., et al. (2009). Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theoretical and Applied Genetics, 119, 1143–1153. doi:10.1007/s00122-009-1116-0.

    Article  Google Scholar 

  5. Fukuoka, H., Yamaguchi, H., Nunome, T., Negoro, S., Miyatake, K., & Ohyama, A. (2010). Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato. Gene, 450, 76–84. doi:10.1016/j.gene.2009.10.006.

    Article  CAS  Google Scholar 

  6. Polignano, G., Uggenti, P., Bisignano, V., & Gatta, C. D. (2010). Genetic divergence analysis in eggplant (Solanum melongena L.) and allied species. Genetic Resources and Crop Evolution, 57, 171–181. doi:10.1007/s10722-009-9459-6.

    Article  Google Scholar 

  7. Barchi, L., Lanteri, S., Portis, E., Acquadro, A., Vale, G., Toppino, L., et al. (2011). Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics, 12, 304. doi:10.1186/1471-2164-12-304.

    Article  CAS  Google Scholar 

  8. Rieu, I., & Powers, S. J. (2009). Real-time quantitative RT-PCR: design, calculations and statistics. The Plant Cell, 21, 1031–1033. doi:10.1105/tpc.109.066001.

    Article  CAS  Google Scholar 

  9. Guenin, S., Mauriat, M., Pelloux, J., Wuytswinkel, O. V., Bellini, C., & Gutierrez, L. (2009). Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany, 60(2), 487–493. doi:10.1093/jxb/ern305.

    Article  CAS  Google Scholar 

  10. Le, D. T., Aldrich, D. L., Valliyodan, B., Watanabe, Y., Ha, C. V., Nishiyama, R., et al. (2012). Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS ONE, 7(9), e46487. doi:10.1371/journal.pone.0046487.

    Article  CAS  Google Scholar 

  11. Imai, T., Ubi, B. E., Saito, T., & Moriguchi, T. (2014). Evaluation of reference genes for accurate normalization of gene expression for real-time quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions. PLoS ONE, 9(1), e86492. doi:10.1371/journal.pone.0086492.

    Article  Google Scholar 

  12. Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39. doi:10.1677/jme.0.0290023.

    Article  CAS  Google Scholar 

  13. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Roy, N. V., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 0034.1–0034.11. doi:10.1186/gb-2002-3-7-research0034.

    Article  Google Scholar 

  14. De Almeida, M. R., Ruedell, C. M., Ricachenevsky, F. K., Sperotto, R. A., Pasquali, G., & Fett-Neto, A. G. (2010). Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Molecular Biology, 11, 73. doi:10.1186/1471-2199-11-73.

    Article  Google Scholar 

  15. Gachon, C., Mingam, A., & Charrier, B. (2004). Real-time PCR: what relevance to plant studies? Journal of Experimental Botany, 55(402), 1445–1454. doi:10.1093/jxb/erh181.

    Article  CAS  Google Scholar 

  16. Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1(3), 1559–1582. doi:10.1038/nprot.2006.236.

    Article  CAS  Google Scholar 

  17. Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonak, E. J., Lind, K., et al. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27, 95–125. doi:10.1016/j.mam.2005.12.007.

    Article  CAS  Google Scholar 

  18. Cassan-Wang, H., Soler, M., Yu, H., Camargo, E. L. O., Carocha, V., Ladouce, N., et al. (2012). Reference genes for high-throughput quantitative reverse transcription–PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. Plant and Cell Physiology, 53(12), 2101–2116. doi:10.1093/pcp/pcs152.

    Article  CAS  Google Scholar 

  19. Yeap, W.-C., Loo, J. M., Wong, Y. C., & Kulaveerasingam, H. (2014). Evaluation of suitable reference genes for qRT-PCR gene expression normalization in reproductive, vegetative tissues and during fruit development in oil palm. Plant Cell Tissue Organ Culture, 116, 55–66. doi:10.1007/s11240-013-0382-3.

    Article  CAS  Google Scholar 

  20. Dheda, K., Huggett, J. F., Chang, J. S., Kima, L. U., Bustinc, S. A., Johnson, M. A., et al. (2005). The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry, 344, 141–143. doi:10.1016/j.ab.2005.05.022.

    Article  CAS  Google Scholar 

  21. Gutierrez, L., Mauriat, M., Guenin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., et al. (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6, 609–618. doi:10.1111/j.1467-7652.2008.00346.x. Epub 2008 Apr 22.

    Article  CAS  Google Scholar 

  22. Ferguson, B. S., Nam, H., Hopkins, R. G., & Morrison, R. F. (2010). Impact of reference gene selection for target gene normalization on experimental outcome using real-time qRT-PCR in adipocytes. PLoS ONE, 5(12), e15208. doi:10.1371/journal.pone.0015208.

    Article  CAS  Google Scholar 

  23. Kong, Q., Yuan, J., Gao, L., Zhao, S., Jiang, W., Huang, Y., et al. (2014). Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE, 9(2), e90612. doi:10.1371/journal.pone.0090612.

    Article  Google Scholar 

  24. Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., & Weiner, A. M. (1965). The functioning of higher eukaryotic genes. Molecular Biology of the Gene, 1(21), 704.

    Google Scholar 

  25. Warrington, J. A., Nair, A., Mahadevappa, M., & Tsyganskaya, M. (2000). Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiological Genomics, 2, 143–147.

    CAS  Google Scholar 

  26. Silver, N., Best, S., Jiang, J., & Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7, 33. doi:10.1186/1471-2199-7-33.

    Article  Google Scholar 

  27. Kouadjo, K. E., Nishida, Y., Cadrin-Girard, J. F., Yoshioka, M., & St-Amand, J. (2007). Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics, 8, 127. doi:10.1186/1471-2164-8-127.

    Article  Google Scholar 

  28. Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250. doi:10.1158/0008-5472.

    Article  CAS  Google Scholar 

  29. Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., & Perez, J. A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 8, 131. doi:10.1186/1471-2229-8-131.

    Article  Google Scholar 

  30. Paolacci, A. R., Tanzarella, O. A., Porceddu, E., & Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10, 11. doi:10.1186/1471-2199-10-11.

    Article  Google Scholar 

  31. Hellemans, J., Mortier, G., Paepe, A. D., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8(2), R19. doi:10.1186/gb-2007-8-2-r19.

    Article  Google Scholar 

  32. Gantasala, N. P., Papolu, P. K., Thakur, P. K., Kamaraju, D., Sreevathsa, R., & Rao, U. (2013). Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Research Notes, 6, 312. doi:10.1186/1756-0500-6-312.

    Article  CAS  Google Scholar 

  33. Carles, C. C., & Fletcher, J. C. (2009). The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes and Development, 23, 2723–2728. doi:10.1101/gad.1812609.

    Article  CAS  Google Scholar 

  34. Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., et al. (2012). Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE, 7(2), e31263. doi:10.1371/journal.pone.0031263.

    Article  CAS  Google Scholar 

  35. Nakano, T., Fujisawa, M., Shima, Y., & Ito, Y. (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany, 65(12), 3111–9. doi:10.1093/jxb/eru154.

    Article  Google Scholar 

  36. Demidenko, N. V., Logacheva, M. D., & Penin, A. A. (2011). Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS ONE, 6(5), e19434. doi:10.1371/journal.pone.0019434.

    Article  CAS  Google Scholar 

  37. Zhu, X., Li, X., Chen, W., Chen, J., Lu, W., Chen, L., et al. (2012). Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE, 7(8), e44405. doi:10.1371/journal.pone.0044405.

    Article  CAS  Google Scholar 

  38. Padmalatha, K. V., Dhandapani, G., Kanakachari, M., Kumar, S., Dass, A., Patil, D. P., et al. (2012). Genome-wide transcriptomic analysis of cotton under drought stress reveals significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Molecular Biology, 78, 223–246. doi:10.1007/s11103-011-9857-y.

    Article  CAS  Google Scholar 

  39. Artico, S., Nardeli, S. M., Brilhante, O., Grossi-de-Sa, M. F., & Alves-Ferreira, M. (2010). Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology, 10, 49. doi:10.1186/1471-2229-10-49.

    Article  Google Scholar 

  40. LiLi, T., XianLong, Z., DiQiu, L., ShuangXia, J., JingLin, C., LongFu, Z., et al. (2007). Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chinese Science Bulletin, 52(22), 3110–3117. doi:10.1007/s11434-007-0461-0.

    Article  Google Scholar 

  41. Wan, H., Yuan, W., Ruan, M., Ye, Q., Wang, R., Li, Z., et al. (2011). Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochemical and Biophysical Research Communications, 416, 24–30. doi:10.1016/j.bbrc.2011.10.105.

    Article  CAS  Google Scholar 

  42. Jian, B., Liu, B., Bi, Y., Hou, W., Wu, C., & Han, T. (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9, 59. doi:10.1186/1471-2199-9-59.

    Article  Google Scholar 

  43. Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283, 233–241. doi:10.1007/s00438-010-0511-1.

    Article  CAS  Google Scholar 

  44. Reddy, D. S., Bhatnagar-Mathur, P., Cindhuri, K. S., & Sharma, K. K. (2013). Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. PLoS ONE, 8(10), e78555. doi:10.1371/journal.pone.0078555.

    Article  Google Scholar 

  45. Barsalobres-Cavallari, C., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, 10, 1. doi:10.1186/1471-2199-10-1.

    Article  Google Scholar 

  46. Chandna, R., Augustine, R., & Bisht, N. C. (2012). Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS ONE, 7(5), e36918. doi:10.1371/journal.pone.0036918.

    Article  CAS  Google Scholar 

  47. Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Munoz-Blanco, J., & Caballero, J. L. (2013). Identification and validation of reference genes for transcript normalization in strawberry (Fragaria ananassa) defense responses. PLoS ONE, 8(8), e70603. doi:10.1371/journal.pone.0070603.

    Article  CAS  Google Scholar 

  48. Tong, Z., Gao, Z., Wang, F., Zhou, J., & Zhang, Z. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10, 71. doi:10.1186/1471-2199-10-71.

    Article  Google Scholar 

  49. Liavonchanka, A., & Feussner, I. (2006). Lipoxygenases: occurrence, functions and catalysis. Journal of Plant Physiology, 163, 348–357. doi:10.1016/j.jplph.2005.11.006.

    Article  CAS  Google Scholar 

  50. Porta, H., & Rocha-Sosa, M. (2002). Plant lipoxygenases: physiological and molecular features. Journal of Plant Physiology, 130, 15–21. doi:10.1104/pp. 010787.

    Article  CAS  Google Scholar 

  51. Feng, B., Dong, Z., Xu, Z., An, X., Qin, H., Wu, N., et al. (2010). Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. Journal of Cereal Science, 52, 387–394. doi:10.1016/j.jcs.2010.06.019.

    Article  CAS  Google Scholar 

  52. Umate, P. (2011). Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice. Plant Signaling & Behavior, 6(3), 335–338. doi:10.4161/psb.6.3.13546.

    Article  CAS  Google Scholar 

  53. Wang, R., Shen, W., Liu, L., Jiang, L., Liu, Y., Su, N., et al. (2008). A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Molecular Biology, 66(4), 401–414. doi:10.1007/s11103-007-9278-0.

    Article  CAS  Google Scholar 

  54. Vellosillo, T., Martinez, M., Lopez, M. A., Vicente, J., Cascon, T., Dolan, L., et al. (2007). Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell, 19, 831–846. doi:10.1105/tpc.106.046052.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Indian Council of Agricultural Research (ICAR), New Delhi. We thank Dr. M. L. V. Phanindra for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polumetla Ananda Kumar.

Additional information

Mogilicherla Kanakachar and Amolkumar U. Solanke contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Strategy for the identification of reference genes for qPCR normalization in brinjal (Solanum melongena L.) fruit development stages. (PPTX 216 kb)

Supplementary material 2

Analysis for efficiency of qPCR primers. (PPTX 577 kb)

Supplementary material 3

Real-time amplification specificity. Melt curves with a single peak generated for each of the 21 reference genes. (PPTX 1107 kb)

Supplementary material 4

Values of efficiency ± standard deviation (SD) of the primers for the housekeeping genes and average values of quantification cycle (Cq) ± standard deviation (SD) of biological replicates generated by the Miner to the reference genes of brinjal. (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanakachari, M., Solanke, A.U., Prabhakaran, N. et al. Evaluation of Suitable Reference Genes for Normalization of qPCR Gene Expression Studies in Brinjal (Solanum melongena L.) During Fruit Developmental Stages. Appl Biochem Biotechnol 178, 433–450 (2016). https://doi.org/10.1007/s12010-015-1884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1884-8

Keywords

Navigation