Skip to main content

Advertisement

Log in

The Effect of Light Stress and Other Culture Conditions on Photoinhibition and Growth of Dunaliella tertiolecta

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work aimed to examine the effects of high light stress as well as other culture conditions including HCO3 concentration, temperature, salinity, and pre-acclimation on photoinhibition and growth of halotolerant alga Dunaliella tertiolecta. Significant photoinhibition of D. tertiolecta was observed during a short period of exposure (6 hours) to high intensity of lights (1000, 1500, and 2000 μmol photons m−2 s−1); however, after 2 days of continuous light exposure, the alga adapted to high light stress and reached similar growth rates as low light exposure. The increase in HCO3 concentration in the culture medium did not reduce photoinhibition, but the growth rate and chlorophyll contents increased with increasing HCO3 concentrations. Temperature had significant effects on photoinhibition. Combined high temperature and high light intensity led to more serious photoinhibition and reduced cell growth rates, so did combined low salinity and high light intensity. Pre-acclimation by 50, 200, or 500 μmol photons m−2 s−1 each for 1, 3, or 6 hours (a total of nine treatments) did not significantly influence photoinhibition or cell growth of D. tertiolecta, probably because the acclimation periods were not long enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Research, 65, 186–202.

    Article  CAS  Google Scholar 

  2. Neto, A. M. P., et al. (2013). Improvement in microalgae lipid extraction using a sonication-assisted method. Renewable Energy, 55, 525–531.

    Article  Google Scholar 

  3. Leema, J. M., et al. (2010). High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221–9227.

    Article  Google Scholar 

  4. Harun, R., et al. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14(3), 1037–1047.

    Article  CAS  Google Scholar 

  5. Cheng-Wu, Z., et al. (2001). An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp.(Eustigmatophyceae). Aquaculture, 195(1), 35–49.

    Article  CAS  Google Scholar 

  6. Patil, V., et al. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15(1), 1–9.

    Article  CAS  Google Scholar 

  7. Harun, R., Danquah, M. K., & Forde, G. M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology, 85(2), 199–203.

    CAS  Google Scholar 

  8. Vergara-Fernández, A., et al (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32(4), 338–344.

    Article  Google Scholar 

  9. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  10. Terigar, B. G., & Theegala, C. S. (2014). Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures. Renewable Energy, 64, 238–243.

    Article  CAS  Google Scholar 

  11. Teo, C. L., et al. (2014). Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp. Renewable Energy, 68, 1–5.

    Article  CAS  Google Scholar 

  12. Cheirsilp, B., & Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510–516.

    Article  CAS  Google Scholar 

  13. Ren, H.-Y., et al. (2014). Energy conversion analysis of microalgal lipid production under different culture modes. Bioresource Technology, 166, 625–629.

    Article  CAS  Google Scholar 

  14. Serôdio, J., Vieira, S., & Cruz, S. (2008). Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence. Continental Shelf Research, 28(10), 1363–1375.

    Article  Google Scholar 

  15. Tang, H., et al. (2011). Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy, 88(10), 3324–3330.

    Article  CAS  Google Scholar 

  16. Khoeyi, Z. A., Seyfabadi, J., & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 41–49.

    Article  Google Scholar 

  17. Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57(3), 287–293.

    Article  CAS  Google Scholar 

  18. Kitaya, Y., et al. 2009. Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. in Nineteenth International Seaweed Symposium. . Springer.

  19. Taher, H., et al. 2014. Growth of microalgae using CO2 enriched air for biodiesel production in supercritical CO2. Renewable Energy

  20. Ra, C. H., et al. (2015). Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renewable Energy, 80, 117–122.

    Article  CAS  Google Scholar 

  21. Borowitzka, M. A., & Siva, C. J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5), 567–590.

    Article  Google Scholar 

  22. Hoshaw, R. W., & Maluf, L. Y. (1981). Ultrastructure of the green flagellate Dunaliella tertiolecta (Chlorophyceae, Volvocales) with comparative notes on three other species. Phycologia, 20(2), 199–206.

    Article  Google Scholar 

  23. Hosseini Tafreshi, A., & Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology, 107(1), 14–35.

    Article  CAS  Google Scholar 

  24. El Arroussi, H., et al. (2015). Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renewable Energy, 77, 15–19.

    Article  Google Scholar 

  25. Fazeli, M., et al. (2006). Effects of salinity on β-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia Salt Lake, north of Iran. Bioresource Technology, 97(18), 2453–2456.

    Article  CAS  Google Scholar 

  26. Sukenik, A., et al. (1990). Adaptation of the photosynthetic apparatus to irradiance in Dunaliella tertiolecta. A kinetic study. Plant Physiology, 92(4), 891–898.

    Article  CAS  Google Scholar 

  27. Mishra, A., & Jha, B. (2011). Antioxidant response of the microalga Dunaliella salina under salt stress. Botanica Marina, 54(2), 195–199.

    CAS  Google Scholar 

  28. Alizadeh, G., et al. 2011 The productivity and stability of plant cell for biotechnology purposes.

  29. EonSeon, J. (2013). Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis. Algae, 28(2), 203–211.

    Article  Google Scholar 

  30. Pick, U., Karni, L., & Avron, M. (1986). Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiology, 81(1), 92–96.

    Article  CAS  Google Scholar 

  31. Kim, J. H., Nemson, J. A., & Melis, A. (1993). Photosystem II reaction center damage and repair in Dunaliella salina (green alga) (analysis under physiological and irradiance-stress conditions). Plant Physiology, 103(1), 181–189.

    Article  CAS  Google Scholar 

  32. Baker, N.R. and K. Oxborough. 2004. Chlorophyll fluorescence as a probe of photosynthetic productivity, in chlorophyll a fluorescence. Springer. p. 65–82.

  33. Lichtenthaler, H.K. and C. Buschmann, 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy, in Current protocols in food analytical chemistry, M.M. Giusti and R.E. Wrolstad, Editors.

  34. Masojıdek, J., G. Torzillo, and M. Koblızek, 2013. Photosynthesis in microalgae, in Handbook of microalgal culture: applied phycology and biotechnology, A. Richmond and Q. Hu, Editors. John Wiley & Sons.

  35. Simionato, D., et al. (2011). Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresource Technology, 102(10), 6026–6032.

    Article  CAS  Google Scholar 

  36. Amoroso, G., et al. (1998). Uptake of HCO3− and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiology, 116(1), 193–201.

    Article  CAS  Google Scholar 

  37. White, D., et al. (2013). The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. Journal of Applied Phycology, 25(1), 153–165.

    Article  CAS  Google Scholar 

  38. Nixon, P. J., et al. (2005). FtsH-mediated repair of the photosystem II complex in response to light stress. Journal of Experimental Botany, 56(411), 357–363.

    Article  CAS  Google Scholar 

  39. Ben-Amotz, A. (1995). New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. Journal of Applied Phycology, 7(1), 65–68.

    Article  CAS  Google Scholar 

  40. Silva, E. N., et al. (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167(14), 1157–1164.

    Article  CAS  Google Scholar 

  41. Liu, F., & Pang, S. J. (2010). Performances of growth, photochemical efficiency, and stress tolerance of young sporophytes from seven populations of Saccharina japonica (Phaeophyta) under short-term heat stress. Journal of Applied Phycology, 22(2), 221–229.

    Article  Google Scholar 

  42. Takagi, M., & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3), 223–226.

    Article  CAS  Google Scholar 

  43. Bracher, A. 1999. Photoacclimation of phytoplankton in different biogeochemical provinces of the Southern Ocean and its significance for estimating primary production. Berichte zur Polarforschung (Reports on Polar Research), 341.

  44. Garcia-Mendoza, E., et al. (2002). Non-photochemical quenching of chlorophyll fluorescence in Chlorella fusca acclimated to constant and dynamic light conditions. Photosynthesis Research, 74(3), 303–315.

    Article  CAS  Google Scholar 

  45. Ritz, M., et al. (2000). Kinetics of photoacclimation in response to a shift to high light of the red alga Rhodella violacea adapted to low irradiance. Plant Physiology, 123(4), 1415–1426.

    Article  CAS  Google Scholar 

  46. Papadakis, I. A., Kotzabasis, K., & Lika, K. (2005). A cell-based model for the photoacclimation and CO2-acclimation of the photosynthetic apparatus. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1708(2), 250–261.

    Article  CAS  Google Scholar 

  47. Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). Journal of Applied Phycology, 12(3–5), 349–354.

    Article  Google Scholar 

  48. Falkowski, P.G. and J.A. Raven, 2013. Aquatic photosynthesis. Princeton University Press.

Download references

Acknowledgments

This research was supported by PTT Research and Technology Institute; the Royal Golden Jubilee Ph.D. Program of Thailand (Thailand Research Fund); the Center for Environmental Health, Toxicology, and Management of Chemicals under the Science & Technology Postgraduate Education and Research Development Office (PERDO) of the Ministry of Education, Thailand; the US National Science Foundation (award # CMMI-1239078); and the startup fund of North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prayad Pokethitiyook.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seepratoomrosh, J., Pokethitiyook, P., Meetam, M. et al. The Effect of Light Stress and Other Culture Conditions on Photoinhibition and Growth of Dunaliella tertiolecta . Appl Biochem Biotechnol 178, 396–407 (2016). https://doi.org/10.1007/s12010-015-1882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1882-x

Keywords

Navigation