Skip to main content
Log in

A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Because of the high diversity of hydrocarbons, degradation of each class of these compounds is activated by a specific enzyme. However, most of other downstream enzymes necessary for complete degradation of hydrocarbons maybe common between different hydrocarbons. The genes encoding proteins for degradation of hydrocarbons, including the proteins required for the uptake of these molecules, the specific enzyme used for the initial activation of the molecules and other necessary degrading enzymes are usually arranged as an operon. Although the corresponding genes in many phylogenetic groups of microbial species show different levels of diversity in terms of the gene sequence, the organisation of the genes in the genome or on plasmids and the activation mode (inductive or constitutive), some organisms show identical hydrocarbon-degrading genes, probably as a result of horizontal gene transfer between microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abbasian, F., Lockington, R., Mallavarapu, M., & Naidu, R. (2015). A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotech, 176, 670–699.

    Article  CAS  Google Scholar 

  2. Abin-Fuentes, A., Mohamed, M. E.-S., Wang, D. I., & Prather, K. L. (2013). Exploring the mechanism of biocatalyst inhibition in microbial desulfurization. Applied and Environmental Microbiology, 79, 7807–7817.

    Article  CAS  Google Scholar 

  3. Agrawal, P., Latha, S., & Mahadevan, A. (1997). Utilization of phenylalanine and phenylacetic acid by Pseudomonas solanacearum. Appl Biochem Biotech, 61, 379–391.

    Article  Google Scholar 

  4. Arora, P. K., Srivastava, A., & Singh, V. P. (2014). Bacterial degradation of nitrophenols and their derivatives. Journal of Hazardous Materials, 266, 42–59.

    Article  CAS  Google Scholar 

  5. Asperger, O., & Kleher, H. (1991). Metabolism of alkanes by ac in etobacter. The Biology of Acinetobacter: Taxonomy, Clinical Importance, Molecular Biology, Physiology, Industrial Relevance, 57, 323.

    Article  CAS  Google Scholar 

  6. B, V. d. (2005). The FadL family: unusual transporters for unusual substrates. Curr Opin Struc Biol, 15, 401–407.

    Article  CAS  Google Scholar 

  7. Beškoski, V. P., Gojgić-Cvijović, G., Milić, J., Ilić, M., Miletić, S., Šolević, T., & Vrvić, M. M. (2011). Bioremediation of a soil contaminated by mazut (heavy residual fuel oil)—a field experiment. Chemosphere, 83, 34–40.

    Article  CAS  Google Scholar 

  8. Biń, A. K., Machniewski, P., Sakowicz, R., Ostrowska, J., & Zieliński, J. (2001). Degradation of nitroaromatics (MNT, DNT and TNT) by AOPs. Ozone Science and Engineering, 23, 343–349.

    Article  Google Scholar 

  9. Boronin, A., & Kosheleva, I. (2010). Handbook of hydrocarbon and lipid microbiology (pp. 1155–1163). Springer.

  10. Boronin, A. M., & Kosheleva, I. A. (2014). Current environmental issues and challenges (pp. 159–168). Springer.

  11. Broberg, C. A., & Clark, D. D. (2010). Shotgun proteomics of Xanthobacter autotrophicus Py2 reveals proteins specific to growth on propylene. Archives of Microbiology, 192, 945–957.

    Article  CAS  Google Scholar 

  12. Brodkorb, D., Gottschall, M., Marmulla, R., Lüddeke, F., & Harder, J. (2010). Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes. The Journal of Biological Chemistry, 285, 30436–30442.

    Article  CAS  Google Scholar 

  13. Busch, A., Lacal, J., Silva-Jímenez, H., Krell, T., & Ramos, J. L. (2010). Catabolite repression of the TodS/TodT two-component system and effector-dependent transphosphorylation of TodT as the basis for toluene dioxygenase catabolic pathway control. J Biotech, 192, 4246–4250.

    CAS  Google Scholar 

  14. Callaghan, A., Morris, B., Pereira, I., McInerney, M., Austin, R. N., Groves, J. T., Kukor, J., Suflita, J., Young, L., & Zylstra, G. (2012). The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environmental Microbiology, 14, 101–113.

    Article  CAS  Google Scholar 

  15. Cappelletti, M., Fedi, S., Frascari, D., Ohtake, H., Turner, R., & Zannoni, D. (2011). Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Applied and Environmental Microbiology, 77, 1619–1627.

    Article  CAS  Google Scholar 

  16. Cheng, Q., Thomas, S., & Rouviere, P. (2002). Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis. Appl Microbiol Biotech, 58, 704–711.

    Article  CAS  Google Scholar 

  17. Choi, E. N., Cho, M. C., Kim, Y., Kim, C.-K., & Lee, K. (2003). Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology, 149, 795–805.

    Article  CAS  Google Scholar 

  18. Dinamarca, M. A., Aranda-Olmedo, I., Puyet, A., & Rojo, F. (2003). Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures. J Biotech, 185, 4772–4778.

    CAS  Google Scholar 

  19. dos Santos, V. M., Yakimov, M. M., Timmis, K. N. and Golyshin, P. N. (2008) Genomic insights into oil biodegradation in marine systems. Microbial Biodegradation: Genomic and Molecular Biology.

  20. Ehrenreich, P., Behrends, A., Harder, J., & Widdel, F. (2000). Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Archives of Microbiology, 173, 58–64.

    Article  CAS  Google Scholar 

  21. Feng, Y., Khoo, H. E., & Poh, C. L. (1999). Purification and characterization of gentisate 1, 2-dioxygenases from pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869. Applied and Environmental Microbiology, 65, 946–950.

    CAS  Google Scholar 

  22. Ferraro, D. J., Gakhar, L., & Ramaswamy, S. (2005). Rieske business: structure–function of rieske non-heme oxygenases. Biochem Biophys Res Comm, 338, 175–190.

    Article  CAS  Google Scholar 

  23. Fondi, M., Rizzi, E., Emiliani, G., Orlandini, V., Berna, L., Papaleo, M. C., Perrin, E., Maida, I., Corti, G., & De Bellis, G. (2013). The genome sequence of the hydrocarbon-degrading acinetobacter venetianus VE-C3. Research in Microbiology, 164, 439–449.

    Article  CAS  Google Scholar 

  24. Funk, S., Crawford, D., Crawford, R., Mead, G., & Davis-Hoover, W. (1995). Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil. Appl Biochem Biotech, 51, 625–633.

    Article  Google Scholar 

  25. Furukawa, K., Suenaga, H., & Goto, M. (2004). Biphenyl dioxygenases: functional versatilities and directed evolution. J Biotech, 186, 5189–5196.

    CAS  Google Scholar 

  26. Gallegos, M.-T., Molina-Henares, A. J., Zhang, X., Terán, W., Bernal, P., Alguel, Y., Guazzaroni, M.-E., Krell, T., Segura, A. and Ramos, J.-L. (2008) Genomic insights into solvent tolerance and pumps that extrude toxic chemicals. In Microbial biodegradation: genomics and molecular biology.

  27. Gargouri, B., Karray, F., Mhiri, N., Aloui, F. and Sayadi, S. (2013) Bioremediation of petroleum hydrocarbons-contaminated soil by bacterial consortium isolated from an industrial wastewater treatment plant. Journal of Chemical Technology and Biotechnology.

  28. Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 11, 236–243.

    Article  CAS  Google Scholar 

  29. Girhard, M., Klaus, T., Khatri, Y., Bernhardt, R., & Urlacher, V. B. (2010). Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotech, 87, 595–607.

    Article  CAS  Google Scholar 

  30. Goetz, F. E., & Harmuth, L. J. (1992). Gentisate pathway in Salmonella typhimurium: metabolism of m-hydroxybenzoate and gentisate. FEMS Microbiology Letters, 97, 45–49.

    Article  CAS  Google Scholar 

  31. Goyal, A., & Zylstra, G. (1997). Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. Journal of Industrial Microbiology and Biotechnology, 19, 401–407.

  32. Grossi, V., Cravo-Laureau, C., Guyoneaud, R., Ranchou-Peyruse, A., & Hirschler-Réa, A. (2008). Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary. Organic Geochemistry, 39, 1197–1203.

    Article  CAS  Google Scholar 

  33. Habe, H., & Omori, T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, Biotechnology, and Biochemistry, 67, 225–243.

    Article  CAS  Google Scholar 

  34. Haigler, B. E., Nishino, S. F., & Spain, J. C. (1994). Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J Biotech, 176, 3433–3437.

    CAS  Google Scholar 

  35. Halecky, M., Karlova, P., Paca, J., Stiborova, M., Kozliak, E. I., Bajpai, R., & Sedlacek, I. (2013). Biodegradation of a mixture of mononitrophenols in a packed-bed aerobic reactor. Journal of Environmental Science and Health, Part A, 48, 989–999.

    Article  CAS  Google Scholar 

  36. Harayama, S., & Timmis, K. N. (2012). Catabolism of aromatic hydrocarbons by pseudomonas, genetics of bacterial diversity. Elsevier B.V.: Academic Press Limited, pp. 151–174.

  37. Hearn, E. M., Patel, D. R., Lepore, B. W., Indic, M., & B., A. (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature, 458, 367–370.

    Article  CAS  Google Scholar 

  38. Herman, P. L., Behrens, M., Chakraborty, S., Chrastil, B. M., Barycki, J., & Weeks, D. P. (2005). A three-component dicamba O-demethylase from pseudomonas maltophilia, strain DI-6 gene isolation, characterization, and heterologous expression. Journal of Biological Chemistry, 280, 24759–24767.

    Article  CAS  Google Scholar 

  39. Hermuth, K., Leuthner, B., & Heider, J. (2002). Operon structure and expression of the genes for benzylsuccinate synthase in Thauera aromatica strain K172. Archives of Microbiology, 177, 132–138.

    Article  CAS  Google Scholar 

  40. Hernández-Arranz, S., Moreno, R., & Rojo, F. (2013). The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy. Environmental Microbiology, 15, 227–241.

    Article  CAS  Google Scholar 

  41. Iwai, S., Chai, B., Sul, W. J., Cole, J. R., Hashsham, S. A., & Tiedje, J. M. (2010). Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. The ISME Journal, 4, 279–285.

    Article  CAS  Google Scholar 

  42. Iwai, S., Johnson, T. A., Chai, B., Hashsham, S. A., & Tiedje, J. M. (2011). Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Applied and Environmental Microbiology, 77, 3551–3557.

    Article  CAS  Google Scholar 

  43. Izmalkova, T. Y., Sazonova, O. I., Nagornih, M. O., Sokolov, S. L., Kosheleva, I. A., & Boronin, A. M. (2013). The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Research in Microbiology, 164, 244–253.

    Article  CAS  Google Scholar 

  44. Izmalkova, T. Y., Sazonova, O. I., Nagornih, M. O., Sokolov, S. L., Kosheleva, I. A., & Boronin, A. M. (2013). The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Research in Microbiology, 164, 244–253.

    Article  CAS  Google Scholar 

  45. Ji, Y., Mao, G., Wang, Y., & Bartlam, M. (2013). Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Frontiers in Microbiology, 4.

  46. Johnson, G. R., Jain, R. K., & C., S. J. (2002). Origins of the 2,4-dinitrotoluene pathway. J Biotech, 184, 4219–4232.

    CAS  Google Scholar 

  47. Jouanneau, Y., Martin, F., Krivobok, S., & Willison, J. C. (2011). Ring-hydroxylating dioxygenases involved in PAH biodegradation: structure, function and biodiversity. In Microbial bioremediation of non metals: current research (pp. 149–175). Norflok, UK: Caister Academic Press.

    Google Scholar 

  48. Jutkina, J., Hansen, L. H., Li, L., Heinaru, E., Vedler, E., Jõesaar, M., & Heinaru, A. (2013). Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids. Plasmid, 70, 393–405.

    Article  CAS  Google Scholar 

  49. Kim, E., & Zylstra, G. (1999). Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Indus Microbiol Biotech, 23, 294–302.

    Article  CAS  Google Scholar 

  50. Kim, S.-J., Kweon, O., Jones, R. C., Edmondson, R. D., & Cerniglia, C. E. (2008). Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation, 19, 859–881.

    Article  CAS  Google Scholar 

  51. Kostichka, K., Thomas, S. M., Gibson, K. J., Nagarajan, V., & Cheng, Q. (2001). Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. The Journal of Bacteriology, 183, 6478–6486.

    Article  CAS  Google Scholar 

  52. Krajewski, S. S., Joswig, M., Nagel, M. and Narberhaus, F. (2014) A tricistronic heat shock operon is important for stress tolerance of Pseudomonas putida and conserved in many environmental bacteria. Environ Microbiol.

  53. Krell, T., Lacal, J., Guazzaroni, M. E., Busch, A., Silva-Jiménez, H., Fillet, S., Reyes-Darías, J. A., Muñoz-Martínez, F., Rico-Jiménez, M., & García-Fontana, C. (2012). Responses of Pseudomonas putida to toxic aromatic carbon sources. Journal of Biotechnology, 160, 25–32.

    Article  CAS  Google Scholar 

  54. Lacal, J., Muñoz-Martínez, F., Reyes-Darías, J. A., Duque, E., Matilla, M., Segura, A., Calvo, J. J. O., Jímenez-Sánchez, C., Krell, T., & Ramos, J. L. (2011). Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environmental Microbiology, 13, 1733–1744.

    Article  CAS  Google Scholar 

  55. Lai, Q., Li, W., & Shao, Z. (2012). Complete genome sequence of Alcanivorax dieselolei type strain B5. J Biotech, 194, 6674–6674.

    CAS  Google Scholar 

  56. Lee, K.-S., Parales, J. V., Friemann, R., & Parales, R. E. (2005). Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42. J Indus Microbiol Biotech, 32, 465–473.

    Article  CAS  Google Scholar 

  57. Lehrbach, P., Ward, J., Meulien, P., & Broda, P. (1982). Physical mapping of TOL plasmids pWWO and pND2 and various R plasmid-TOL derivatives from Pseudomonas spp. J Biotech, 152, 1280–1283.

    CAS  Google Scholar 

  58. Leuthner, B., & Heider, J. (2000). Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of β oxidation of the intermediate benzylsuccinate. J Biotech, 182, 272–277.

  59. Li, L., Liu, X., Yang, W., Xu, F., Wang, W., Feng, L., Bartlam, M., Wang, L., & Rao, Z. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Bio, 376, 453–465.

    Article  CAS  Google Scholar 

  60. Li, L., Liu, X., Yang, W., Xu, F., Wang, W., Wang, L., Feng, L., Bartlam, M., & Rao, Z. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Bio, 376, 453–465.

    Article  CAS  Google Scholar 

  61. Li, S., Zhao, H., Li, Y., Niu, S., & Cai, B. (2012). Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6. J Biotech, 194, 5154–5155.

    CAS  Google Scholar 

  62. Li, W., Shi, J., Wang, X., Han, Y., Tong, W., Ma, L., Liu, B., & Cai, B. (2004). Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from pseudomonas sp. strain ND6. Gene, 336, 231–240.

    Article  CAS  Google Scholar 

  63. Liu, H., Wang, S.-J., Zhang, J.-J., Dai, H., Tang, H., & Zhou, N.-Y. (2011). Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. Applied and Environmental Microbiology, 77, 4547–4552.

    Article  CAS  Google Scholar 

  64. Liu, T.-T., Xu, Y., Liu, H., Luo, S., Yin, Y.-J., Liu, S.-J., & Zhou, N.-Y. (2011). Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038. Appl Microbiol Biotech, 90, 671–678.

    Article  CAS  Google Scholar 

  65. Liu, T.-T., & Zhou, N.-Y. (2012). Novel l-cysteine-dependent maleylpyruvate isomerase in the gentisate pathway of Paenibacillus sp. strain NyZ101. J Biotech, 194, 3987–3994.

    CAS  Google Scholar 

  66. Liu, Y.-F., Liao, R.-Z., Ding, W.-J., Yu, J.-G., & Liu, R.-Z. (2011). Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex. Journal of Biological inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 16, 745–752.

    Article  CAS  Google Scholar 

  67. Lu, L., Cheng, S., Gao, J., Gao, G., & He, M.-Y. (2007). Deep oxidative desulfurization of fuels catalyzed by ionic liquid in the presence of H2O2. Energy & Fuels, 21, 383–384.

    Article  CAS  Google Scholar 

  68. Martinez, I., Santos, V. E., Alcon, A., & Garcia-Ochoa, F. (2015). Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochemistry, 50, 119–124.

    Article  CAS  Google Scholar 

  69. McCammick, E., Gomase, V., McGenity, T., Timson, D., & Hallsworth, J. (2010). Handbook of hydrocarbon and lipid microbiology (pp. 1451–1466). Springer.

  70. Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environment International, 37, 1362–1375.

    Article  CAS  Google Scholar 

  71. Gasemali, M., & Andrew, B. S. (2008). Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiol, 154, 2169–2183.

    Article  CAS  Google Scholar 

  72. Musat, F., Wilkes, H., Behrends, A., Woebken, D., & Widdel, F. (2010). Microbial nitrate-dependent cyclohexane degradation coupled with anaerobic ammonium oxidation. The ISME Journal, 4, 1290–1301.

    Article  CAS  Google Scholar 

  73. Nishino, S. F., & Spain, J. C. (1995). Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain JS765. Applied and Environmental Microbiology, 61, 2308–2313.

    CAS  Google Scholar 

  74. Nordin, K., Unell, M., & Jansson, J. K. (2005). Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Applied and Environmental Microbiology, 71, 6538–6544.

    Article  CAS  Google Scholar 

  75. Obayori, S., & Salam, L. B. (2010). Degradation of polycyclic aromatic hydrocarbons: role of plasmids. Scientific Research and Essays, 5, 4093–4106.

    Google Scholar 

  76. Oberoi, A. S., Philip, L., & Bhallamudi, S. M. (2015). Biodegradation of various aromatic compounds by enriched bacterial cultures: part A—monocyclic and polycyclic aromatic hydrocarbons. Appl Biochem Biotech, 176, 1870–1888.

    Article  CAS  Google Scholar 

  77. Ohtsubo, Y., Nagata, Y., Kimbara, K., Takagi, M., & Ohta, A. (2000). Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid. Gene, 256, 223–228.

    Article  CAS  Google Scholar 

  78. Oliveira, F. J. and De França, F. P. (2005) Increase in removal of polycyclic aromatic hydrocarbons during bioremediation of crude oil-contaminated sandy soil. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, pp. 593–603. Springer.

  79. Perry, L. L., & Zylstra, G. J. (2007). Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Biotech, 189, 7563–7572.

    CAS  Google Scholar 

  80. PhaLe, P. S., MahajaN, M. C., & VaidyaNathaN, C. S. (2013). Biodegradation of polycyclic aromatic hydrocarbons. Journal of the Indian Institute of Science, 77, 141.

    Google Scholar 

  81. Pickrell, W. O., Rees, M. I., & Chung, S.-K. (2012). 1 next generation sequencing methodologies—an overview. Advances in Protein Chemistry and StructuralBiology, 89, 1.

    Article  CAS  Google Scholar 

  82. Rabinovitch-Deere, C. A., & Parales, R. E. (2012). Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene. Applied and Environmental Microbiology, 78, 2306–2315.

    Article  CAS  Google Scholar 

  83. Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F., & Reinhardt, R. (2005). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Archives of Microbiology, 183, 27–36.

    Article  CAS  Google Scholar 

  84. Raheb, J. (2011). The study of biodesulfurization activity in recombinant E. coli strain by cloning the dsz genes involve in 4S pathway. Journal of Sciences, Islamic Republic of Iran, 22, 213–219.

    CAS  Google Scholar 

  85. Ratledge, C. (1984). Microbial conversions of alkanes and fatty acids. Journal of the American Oil Chemists’ Society, 61, 447–453.

    Article  CAS  Google Scholar 

  86. Rios-Hernandez, L. A., Gieg, L. M., & Suflita, J. M. (2003). Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Applied and Environmental Microbiology, 69, 434–443.

    Article  CAS  Google Scholar 

  87. Rodríguez-Herva, J. J., García, V., Hurtado, A., Segura, A., & Ramos, J. L. (2007). The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environmental Microbiology, 9, 1550–1561.

    Article  CAS  Google Scholar 

  88. Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology, 11, 2477–2490.

    Article  CAS  Google Scholar 

  89. Rojo, F. (2010), in Handbook of Hydrocarbon and Lipid Microbiology, Springer, pp. 1141–1154.

  90. Sayavedra-Soto, L. A., Hamamura, N., Liu, C. W., Kimbrel, J. A., Chang, J. H., & Arp, D. J. (2011). The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environmental Microbiology Reports, 3, 390–396.

    Article  CAS  Google Scholar 

  91. Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K., & Jaun, B. (2010). The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 465, 606–608.

    Article  CAS  Google Scholar 

  92. Schneiker, S., dos Santos, V. A. M., Bartels, D., Bekel, T., Brecht, M., Buhrmester, J., Chernikova, T. N., Denaro, R., Ferrer, M., & Gertler, C. (2006). Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 24, 997–1004.

    Article  CAS  Google Scholar 

  93. Schuler, L., Jouanneau, Y., Chadhain, S. M. N., Meyer, C., Pouli, M., Zylstra, G. J., Hols, P., & Agathos, S. N. (2009). Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotech, 83, 465–475.

    Article  CAS  Google Scholar 

  94. Selesi, D., Jehmlich, N., von Bergen, M., Schmidt, F., Rattei, T., Tischler, P., Lueders, T., & Meckenstock, R. U. (2010). Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Biotech, 192, 295–306.

    CAS  Google Scholar 

  95. Selesi, D., & Meckenstock, R. U. (2009). Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiology Ecology, 68, 86–93.

    Article  CAS  Google Scholar 

  96. Selesi, D. e., & Meckenstock, R. U. (2009). Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiology Ecology, 68, 86–93.

    Article  CAS  Google Scholar 

  97. Seo, J.-S., Keum, Y.-S., Hu, Y., Lee, S.-E., & Li, Q. X. (2006). Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta-and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere, 65, 2388–2394.

    Article  CAS  Google Scholar 

  98. Shapiro, J., Charbit, A., Benson, S., Caruso, M., Laux, R., Meyer, R., & Banuett, F. (1981). Trends in the biology of fermentations for fuels and chemicals. Springer-Verlag: Springer, pp. 243–272.

  99. Shavandi, M., Soheili, M., Zareian, S., Akbari, N., & Khajeh, K. (2013). The gene cloning, overexpression, purification, and characterization of dibenzothiophene monooxygenase and desulfinase from Gordonia alkanivorans ripi90a. Journal of Petroleum Science and Technology, 3, 57–64.

    Google Scholar 

  100. Shindo, K., Nakamura, R., Osawa, A., Kagami, O., Kanoh, K., Furukawa, K., & Misawa, N. (2005). Biocatalytic synthesis of monocyclic arene-dihydrodiols and -diols by Escherichia coli cells expressing hybrid toluene/biphenyl dioxygenase and dihydrodiol dehydrogenase genes. Journal of Molecular Catalysis B: Enzymatic, 35, 134–141.

    Article  CAS  Google Scholar 

  101. Singh, D., Kumari, A., & Ramanathan, G. (2014). 3-nitrotoluene dioxygenase from Diaphorobacter sp. strains: cloning, sequencing and evolutionary studies. Biodegradation, 25, 479–492.

    Article  CAS  Google Scholar 

  102. Smits, T. H., Balada, S. B., Witholt, B., & van Beilen, J. B. (2002). Functional analysis of alkane hydroxylases from Gram-negative and Gram-positive bacteria. J Biotech, 184, 1733–1742.

    CAS  Google Scholar 

  103. Spain, J. C., & Gibson, D. T. (1991). Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Applied and Environmental Microbiology, 57, 812–819.

    CAS  Google Scholar 

  104. Spanggord, R. J., Spain, J., Nishino, S., & Mortelmans, K. (1991). Biodegradation of 2, 4-dinitrotoluene by a Pseudomonas sp. Applied and Environmental Microbiology, 57, 3200–3205.

    CAS  Google Scholar 

  105. Sun, X., Zahir, Z., Lynch, K. H., & Dennis, J. J. (2011). An antirepressor, SrpR, is involved in transcriptional regulation of the SrpABC solvent tolerance efflux pump of Pseudomonas putida S12. J Biotech, 193, 2717–2725.

    CAS  Google Scholar 

  106. Symons, Z. C., & Bruce, N. C. (2006). Bacterial pathways for degradation of nitroaromatics. Natural Product Reports, 23, 845–850.

    Article  CAS  Google Scholar 

  107. Szaleniec, M., Hagel, C., Menke, M., Nowak, P., Witko, M., & Heider, J. (2007). Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry, 46, 7637–7646.

    Article  CAS  Google Scholar 

  108. Takeda, H., Yamada, A., Miyauchi, K., Masai, E., & Fukuda, M. (2004). Characterization of transcriptional regulatory genes for biphenyl degradation in rhodococcus sp. strain RHA1. J Biotech, 186, 2134–2146.

    CAS  Google Scholar 

  109. Tanase, A.-M., Ionescu, R., Chiciudean, I., Vassu, T., & Stoica, I. (2013). Characterization of hydrocarbon-degrading bacterial strains isolated from oil-polluted soil. International Biodeterioration & Biodegradation, 84, 150–154.

    Article  CAS  Google Scholar 

  110. Tenbrink, F., Schink, B., & Kroneck, P. M. H. (2011). Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. J Biotech, 193, 1229–1236.

    CAS  Google Scholar 

  111. Thauer, R. K. (2011). Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Current Opinion in Microbiology, 14, 292–299.

    Article  CAS  Google Scholar 

  112. Tinberg, C. E., & Lippard, S. J. (2011). Dioxygen activation in soluble methane monooxygenase. Accounts of Chemical Research, 44, 280–288.

    Article  CAS  Google Scholar 

  113. Tinberg, C. E., Song, W. J., Izzo, V., & Lippard, S. J. (2011). Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Biochemistry, 50, 1788–1798.

    Article  CAS  Google Scholar 

  114. Torres Pazmino, D., Winkler, M., Glieder, A., & Fraaije, M. (2010). Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology, 146, 9–24.

    Article  CAS  Google Scholar 

  115. van Beilen, J. B., Funhoff, E. G., van Loon, A., Just, A., Kaysser, L., Bouza, M., Holtackers, R., Röthlisberger, M., Li, Z., & Witholt, B. (2006). Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Applied and Environmental Microbiology, 72, 59–65.

    Article  CAS  Google Scholar 

  116. van Beilen, J. B., Panke, S., Lucchini, S., Franchini, A. G., Röthlisberger, M., & Witholt, B. (2001). Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology, 147, 1621–1630.

    Article  Google Scholar 

  117. Van der Meer, J. (2008). A genomic view on the evolution of catabolic pathways and bacterial adaptation to xenobiotic (compounds. ed., ). Norfolk, UK: Caister Academic Press.

  118. von Netzer, F., Pilloni, G., Kleindienst, S., Krüger, M., Knittel, K., Gründger, F., & Lueders, T. (2013). Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Applied and Environmental Microbiology, 79, 543–552.

    Article  CAS  Google Scholar 

  119. Wentzel, A., Ellingsen, T. E., Kotlar, H.-K., Zotchev, S. B., & Throne-Holst, M. (2007). Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotech, 76, 1209–1221.

    Article  CAS  Google Scholar 

  120. Whyte, L., Smits, T., Labbe, D., Witholt, B., Greer, C., & Van Beilen, J. (2002). Gene cloning and characterization of multiple alkane hydroxylase systems in rhodococcus strains Q15 and NRRL B-16531. Applied and Environmental Microbiology, 68, 5933–5942.

    Article  CAS  Google Scholar 

  121. Yakimov, M. M., Timmis, K. N., & Golyshin, P. N. (2007). Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology, 18, 257–266.

    Article  CAS  Google Scholar 

  122. Yen, K.-M., Serdar, C. M., & Gunsalus, I. C. (1988). Genetics of naphthalene catabolism in pseudomonads. Critical reviews in microbiology, 15, 247–268.

  123. Zeyer, J., Kocher, H., & Timmis, K. (1986). Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Applied and Environmental Microbiology, 52, 334–339.

    CAS  Google Scholar 

  124. Zylstra, G. J., & Gibson, D. T. (1991). Genetic Engineering. New York: Springer US, Plenum Press, pp. 183–203.

Download references

Acknowledgments

The authors would like to appreciate Australian Government, University of South Australia, University of Newcastle and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE) for funding towards this research.

Conflicts of Interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firouz Abbasian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasian, F., Lockington, R., Megharaj, M. et al. A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 178, 224–250 (2016). https://doi.org/10.1007/s12010-015-1881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1881-y

Keywords

Navigation