Skip to main content

Advertisement

Log in

Exploration of Peptide Inhibitors of Human Squalene Synthase through Molecular Modeling and Phage Display Technique

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Many studies have demonstrated the role of elevated levels of serum cholesterol in the pathogenesis of atherosclerosis and coronary heart disease. Various drugs targeting the key enzymes involved in the cholesterol biosynthesis pathway have been investigated for the treatment of hypercholesterolemia. Human squalene synthase has been one of the most important targets for therapeutic intervention. In the present study, we used the recombinant human squalene synthase as the lure for screening the peptide inhibitors from phage-displayed random peptide library. The tightly bound phages and their derived peptides were further evaluated based on their potential binding capabilities, molecular modeling characteristics and predicted absorption, distribution, metabolism, excretion, toxicity (ADMET) properties. Several hexa-peptides and tetra-peptides were finally synthesized to assay their inhibitory effects toward the recombinant human squalene synthase. The results demonstrated that the hexa-peptide FTACNW and tetra-peptide VACL can inhibit human squalene synthase effectively (with IC50 values near 100 μM) and may have potential to develop further as future hypocholesterolemia agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADMET:

Absorption, distribution, metabolism, excretion, toxicity

ELISA:

Enzyme-linked immune-sorbent assay

FPP:

Farnesyl diphosphate

hSQS:

Human squalene synthase

HMG-CoA:

3-hydroxy-3-methylglutaryl-coenzyme A

hHMGR:

human HMG-CoA reductase

hHMGRI:

human HMG-CoA reductase inhibitor

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

LDL-R:

Low-density lipoprotein receptor

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide

PCR:

Polymerase chain reaction

PSQPP:

Presqualene diphosphate

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Norenberg, D. (1984). Lipid research clinics program. Journal of the American Medical Association, 252, 2545–2548.

    Article  Google Scholar 

  2. Brown, A. S., Bakker-Arkema, R. G., Yellen, L. R., Henley, W. J., Guthrie, R., Campbell, C. F., Koren, M., Woo, W., McLain, R., & Black, D. M. (1998). Treating patients with documented atherosclerosis to national cholesterol education program- recommended low-density-lipoprotein cholesterol goals with atorvastatin, fluvastatin, lovastatin and simvastatin. Journal of the American College of Cardiology, 32, 665–672.

    Article  CAS  Google Scholar 

  3. Hiyoshi, H., Yanagimachi, M., Ito, M., Ohtsuka, I., Yoshida, I., Saeki, T., & Tanaka, H. (2000). Effect of ER-27856, a novel squalene synthase inhibitor, on plasma cholesterol in rhesus monkeys: comparison with 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors. Journal of Lipid Research, 41, 1136–1144.

    CAS  Google Scholar 

  4. Satoh, K., Yamato, A., Nakai, T., Hoshi, K., & Ichihara, K. (1995). Effects of 3-hydroxy-3 -methylglutaryl coenzyme A reductase inhibitors on mitochondrial respiration in ischaemic dog hearts. British Journal of Pharmacology, 116, 1894–1898.

    Article  CAS  Google Scholar 

  5. Tansey, T. R., & Shechter, I. (2000). Structure and regulation of mammalian squalene synthase. Biochimica et Biophysica Acta, 1529, 49–62.

    Article  CAS  Google Scholar 

  6. Do, R., Kiss, R. S., Gaudet, D., & Engert, J. C. (2009). Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway. Clinical Genetics, 75, 19–29.

    Article  CAS  Google Scholar 

  7. Pandit, J., Danley, D. E., Schulte, G. K., Mazzalupo, S., Pauly, T. A., Hayward, C. M., Hamanaka, E. S., & Thompson, J. F. (2000). Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. The Journal of Biological Chemistry, 275, 30610–30617.

    Article  CAS  Google Scholar 

  8. Liao, J. K. (2011). Squalene synthase inhibitor lapaquistat acetate: could anything be better than statins? Circulation, 123, 1925–1928.

    Article  Google Scholar 

  9. Stein, E. A., Bays, H., O’Brien, D., Pedicano, J., Piper, E., & Spezzi, A. (2011). Lapaquistat acetate: development of a squalene synthase inhibitor for the treatment of hypercholesterolemia. Circulation, 123, 1974–1985.

    Article  CAS  Google Scholar 

  10. Singh, B. P., Vij, S., & Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171–179.

    Article  CAS  Google Scholar 

  11. Cho, S. J., Juillerat, M. A., & Lee, C. H. (2007). Cholesterol lowering mechanism of soybean protein hydrolysate. Journal of Agriculture and Food Chemistry, 55, 10599–10604.

    Article  CAS  Google Scholar 

  12. Toutouzas, K., Drakopoulou, M., Skoumas, I., & Stefanadis, C. (2010). Advancing therapy for hypercholesterolemia. Expert Opinion on Pharmacotherapy, 11, 1659–1672.

    Article  CAS  Google Scholar 

  13. Smith, G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.

    Article  CAS  Google Scholar 

  14. Krumpe, L. R., & Mori, H. T. (2006). The use of phage-displayed peptide libraries to develop tumor-targeting drugs. International Journal of Peptide Research and Therapy, 12, 79–91.

    Article  CAS  Google Scholar 

  15. Mukhija, S., & Erni, B. (1997). Phage display selection of peptides against enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system (PTS). Molecular Microbiology, 25, 1159–1166.

    Article  CAS  Google Scholar 

  16. Lin, K. C., Chen, C. Y., Huang, K. J., Chang, C. W., Lin, S. P., Chang, D. K., Lin, M. R., & Shiuan, D. (2012). A dodecapeptide (YQVTQSKVMSHR) exhibits antibacterial effect and induces cell aggregation in Escherichia coli. Applied Microbiology and Biotechnology, 94, 755–762.

    Article  CAS  Google Scholar 

  17. Liu, C. I., Liu, Y., Song, G. Y., Yin, F., Hensler, M. E., Jeng, W. Y., Nizet, V., Wang, A. H. J., & Oldfield, E. (2008). A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science, 319, 1391–1394.

    Article  CAS  Google Scholar 

  18. Lin, S. H., Chang, D. K., Chou, M. J., & Shiuan, D. (2015). Peptide inhibitors of human HMG-CoA reductase as potential hypocholesterolemic agents. Biochemistry and Biophysics Research Communication, 456, 104–109.

    Article  CAS  Google Scholar 

  19. Thompson, J. F., Danley, D. E., Mazzalupo, S., Milos, P. M., Lira, M. E., & Harwood, H. J. (1998). Truncation of human squalene synthase yields active crystallable protein. Archive of Biochemistry and Biophysics, 350, 283–290.

    Article  CAS  Google Scholar 

  20. Yang, W. J., Lai, J. F., Peng, K. C., Chiang, H. J., Weng, C. N., & Shiuan, D. (2005). Epitope mapping of Mycoplasma hyopneumoniae using phage displayed peptide libraries and the immune responses of the selected phagotopes. Journal of Immunological Methods, 304, 15–29.

    Article  CAS  Google Scholar 

  21. Mayo, S. L., Olafson, B. D., & Goddartd, W. A. (1990). Dreiding: a genetic force field for molecular simulation. Journal of Physical Chemistry, 94, 8897–8909.

    Article  CAS  Google Scholar 

  22. Venkatachalam, C. M., Jiang, X., Oldfield, T., & Waldman, M. (2003). LigandFit : a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics and Modeling, 21, 289–307.

    Article  CAS  Google Scholar 

  23. Pak, V. V., Koo, M., Kwon, D. Y., Shakhidoyatov, K. M., & Yun, L. (2010). Peptide fragmentation as an approach in modeling of an active peptide and designing a competitive inhibitory peptide for HMG-CoA reductase. Bioorganic and Medicinal Chemistry, 18, 4300–4309.

    Article  CAS  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. van Meerloo, J., Kaspers, G. J., & Cloos, J. (2001). Cell sensitivity assays: the MTT assay. Methods in Molecular Biology, 731, 237–245.

    Article  Google Scholar 

  26. Sealey-Cardona, M., Cammerer, S., Jones, S., Ruiz-Pérez, L. M., Brun, R., Gilbert, I. H., Urbina, J. A., & González-Pacanowska, D. (2007). Kinetic characterization of squalene synthase from Trypanosoma cruzi: selective inhibition by quinuclidine derivatives. Antimicrobial Agents and Chemotherapy, 51, 2123–2129.

    Article  CAS  Google Scholar 

  27. Ichikawa, M., Yokomizo, A., Itoh, M., Usui, H., Shimizu, H., Suzuki, M., Terayama, K., Kanda, A., & Sugita, K. (2011). Discovery of a new 2-aminobenzhydrol template for highly potent squalene synthase inhibitors. Bioorganic and Medicinal Chemistry, 19, 1930–1949.

    Article  CAS  Google Scholar 

  28. Liu, C. I., Jeng, W. Y., Chang, W. J., Shih, M. F., Ko, T. P., & Wang, A. H. J. (2014). Structural insights into the catalytic mechanism of human squalene synthase. Acta Crystallographica, Section D, 70, 231–241.

    Article  CAS  Google Scholar 

  29. Dale Poulter, C., Capson, T. L., Thompson, M. D., & Bard, R. S. (1989). Squalene synthetase, inhibition by ammonium analogs of carbocationic intermediates in the conversion of presqualene diphosphate to squalene. Journal of the American Chemical Society, 111, 3734–3739.

    Article  Google Scholar 

  30. Flint, O. P., Masters, B. A., Gregg, R. E., & Durham, S. K. (1997). Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicology and Applied Pharmacology, 145, 91–98.

    Article  CAS  Google Scholar 

  31. Nishimoto, T., Amano, Y., Tozawa, R., Ishikawa, E., Imura, Y., Yukimasa, H., & Sugiyama, Y. (2003). Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro. British Journal of Pharmacology, 139, 911–918.

    Article  CAS  Google Scholar 

  32. Charlton-Menys, V., & Durrington, P. N. (2007). Squalene synthase inhibitors: clinical pharmacology and cholesterol-lowering potential. Drugs, 67, 11–16.

    Article  CAS  Google Scholar 

  33. Craik, D. J., Fairlie, D. P., Liras, S., & Price, D. (2013). The future of peptide-based drugs. Chemical Biology and Drug Design, 81, 136–147.

    Article  CAS  Google Scholar 

  34. Vlieghe, P., Lisowski, V., Martinez, J., & Khrestchatisky, M. (2010). Synthetic therapeutic peptides: science and market. Drug Discovery Today, 15, 40–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from National Science Council ROC (NSC97 -2311-B259-04-MY3 to D. Shiuan, and NSC99-2113-M-001-024-MY3 to D.-K.Chang.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shiuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 195 kb)

ESM 2

(DOCX 85 kb)

ESM 3

(DOCX 224 kb)

ESM 4

(DOCX 221 kb)

ESM 5

(DOCX 19 kb)

ESM 6

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiuan, D., Lin, HK., Chen, YH. et al. Exploration of Peptide Inhibitors of Human Squalene Synthase through Molecular Modeling and Phage Display Technique. Appl Biochem Biotechnol 178, 312–323 (2016). https://doi.org/10.1007/s12010-015-1873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1873-y

Keywords

Navigation