Skip to main content

Advertisement

Log in

RNA Interference of Odorant-Binding Protein 2 (OBP2) of the Cotton Aphid, Aphis gossypii (Glover), Resulted in Altered Electrophysiological Responses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aphis gossypii (Glover) (Hemiptera: Aphididae) is a highly invasive pest that feeds primarily on phloem resulting in severe economic loss to growers. A. gossypii has cosmopolitan distribution with broad host range, polyphenism, parthenogenetic mode of reproduction, vectoring abilities, and host alteration which has profound influence on its management. Odorant-binding proteins (OBPs) in insects are involved in olfaction, playing a key role in orienting the insect for feeding or oviposition. Recent studies revealed that OBP2 is found in both sensilla trichodea and sensilla basiconica and is preferentially binds to plant volatiles, thus playing crucial roles in host-seeking, detection of oviposition attractants, etc., However, information about the role of OBP2 in A. gossypii (AgOBP2) is still unavailable. In this study, we cloned and characterized OBP2, ortholog from A. gossypii, and the full-length AgOBP2 complementary DNA (cDNA) consisted of 859 bp with an open reading frame of 732 bp. Phylogenetic analysis resulted in grouping of AgOBP2 protein with members of the tribe Aphidini. Further, diet-mediated delivery of double-stranded RNA for AgOBP2 induced silencing, which was evaluated at 48 and 96 h. The reverse transcriptase real-time quantitative polymerase chain reaction (RTq-PCR) results revealed that the level of AgOBP2 messenger RNA (mRNA) was significantly reduced (55–77 %) in dsAgOBP2 treatment after 96 h as compared to the untreated control. The same was reiterated by the electrophysiological responses in the aphids which was reduced (>50 % at 0.25 μg/μl concentration) as compared to the untreated control. Thus, our results showed the potential of gene silencing, possibly to interfere with the odorant perception of A. gossypii for RNAi-mediated pest management. The results from our study provided the first evidence that AgOBP2 play crucial roles in host-seeking, detection of oviposition attractants, etc.; as a result, we suggests that OBP2 could potentially serve as a practicable target for RNAi-mediated gene silencing in hemipteran insect pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rebijith, K. B., Asokan, R., Krishna Kumar, N. K., Krishna, V., Chaitanya, B. N., & Ramamurthy, V. V. (2013). DNA barcoding and elucidation of cryptic aphid species (Hemiptera, Aphididae) in India. Bulletin of Entomological Research, 103, 601–610.

    Article  CAS  Google Scholar 

  2. Dedryver, C. A., Le Ralec, A., & Fabre, F. (2010). The conflicting relationships between aphids and men, a review of aphid damage and control strategies. Comptes Rendus Biologies, 333, 539–553.

    Article  Google Scholar 

  3. Oerke, E. C. (1994). Estimated crop losses in wheat. In E. C. Oerke, H. W. Dehne, F. Schonbeck, & A. Weber (Eds.), Crop production and crop protection, estimated losses in major food and cash crops (Vol. 179, p. 296). Amsterdam: Elsevier.

    Google Scholar 

  4. Morrison, W. P., & Peairs, F. B. (1998). Response model concept and economic impact response model for an introduced pest-the Russian wheat aphid Lanham, MD. Entomological Society of America, 1, 1–11.

    Google Scholar 

  5. Foster, S. P., Devine, G., & Devonshire, A. L. (2007). Insecticide resistance, pp 261–285. In H. F. van Emden & R. Harrington (Eds.), Aphids as Crop Pests. UK: CABI.

    Google Scholar 

  6. Bourguet, D., Genissel, A., & Raymond, M. (2000). Insecticide resistance and dominance levels. Journal Economic Entomology, 93, 588–1595.

    Article  Google Scholar 

  7. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 39(1), 806–881.

    Article  Google Scholar 

  8. Huvenne, H., & Smagghe, G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control. A Review. Journal of Insect Physiology, 56, 227–235.

    Article  CAS  Google Scholar 

  9. Li, H., Chougule, N. P., & Bonning, B. C. (2011). Interaction of the Bacillus thuringiensis delta endotoxins Cry1Ac an, d Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris). Journal Invertebrate Pathology, 107, 69–78.

    Article  CAS  Google Scholar 

  10. Boissona, B., Jacques, J. C., Choumet, V., Martin, E., Xu, J., Vernick, K., et al. (2006). Gene silencing in mosquito salivary glands by RNAi. FEBS Letters, 580, 1988–1992.

    Article  Google Scholar 

  11. Ghanim, M., Kontsedalov, S., & Czosnek, H. (2007). Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochemistry and Molecular Biology, 37, 732–738.

    Article  CAS  Google Scholar 

  12. Garbutt, J. S., Belles, X., Richards, E. H., & Reynolds, S. E. (2012). Persistence of double- stranded RNA in insect hemolymph as a potential determiner of RNA interference success, evidence from Manduca sexta and Blattella germanica. Journal of Insect physiology. doi:10.1016/jjinsphys201205013.

    Google Scholar 

  13. Rong, S., Li, D. Q., Zhang, X. Y., Li, S., Zhu, K. Y., Guo, Y. P., Ma, E., & Zhang, J. (2013). RNA interference to reveal roles of β-N-acetylglucosaminidase gene during molting process in Locusta migratoria. Insect Science, 20(1), 109–119.

    Article  CAS  Google Scholar 

  14. Blandin, S., Moita, L. F., Kocher, T., Wilm, M., Kafatos, F. C., & Levashina, E. A. (2002). Reverse genetics in the mosquito Anopheles gambiae, targeted disruption of the Defensin gene. EMBO Reports, 3, 852–856.

    Article  CAS  Google Scholar 

  15. Turner, C. T., Davy, M. W., MacDiarmid, R. M., Plummer, K. M., & Birch, N. P. (2006). Newcomb RD, RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Molecular Biology, 15, 383–391.

    Article  CAS  Google Scholar 

  16. Pitino, M., Coleman, A. D., Maffei, M. E., Ridout, C. J., & Hogenhout, S. A. (2011). Silencing of aphid genes by dsRNA feeding from plants. PLoS One, 6, e25709.

    Article  CAS  Google Scholar 

  17. Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., et al. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326.

    Article  CAS  Google Scholar 

  18. Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., Wang, L. J., et al. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology., 11, 1307–1313.

    Article  Google Scholar 

  19. Possamai, S. J., Trionnaire, G. L., Bonhomme, J., Christophides, G. K., & Rispe, C. (2007). Gene knockdown by RNAi in the pea aphid. Acyrthosiphon pisum. BMC Biotechnology, 7, 63–70.

    Article  Google Scholar 

  20. Gatehouse, H. S., Gatehouse, L. N., Malone, L. A., Hodges, S., Tregidga, E., & Todd, J. (2004). Amylase activity in honeybee hypopharyngeal glands reduced by RNA interference. Journal of Agricultural Research, 43, 9–13.

    CAS  Google Scholar 

  21. Belles, X. (2010). Beyond Drosophila, RNAi in vitro and functional genomics in insects. Annual Review of Entomology, 55, 111–128.

    Article  CAS  Google Scholar 

  22. Ober, K. A., & Jockusch, E. L. (2006). The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Developmental Biology, 294, 391–405.

    Article  CAS  Google Scholar 

  23. Bolognesi, R., Ramaseshadri, P., Anderson, J., et al. (2012). Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera). PLoS One, 7(10), e47534.

    Article  CAS  Google Scholar 

  24. Mutti, N. S., Park, Y., Reese, J. C., & Reeck, G. R. (2006). RNAi knockdown of a salivary transcript leading to lethality in the pea aphid Acyrthosiphon pisum. Journal of Insect Science, 6, 1–7.

    Article  Google Scholar 

  25. Martin, D., Maestro, O., Cruz, J., Mane-Padros, D., & Belles, X. (2006). RNAi studies reveal a conserved role for RXR in molting in the cockroach, Blattella germanica. Journal of Insect Physiology, 52, 410–416.

    Article  CAS  Google Scholar 

  26. Cruz, J., Mane-Padros, D., Belles, X., & Martin, D. (2006). Functions of the ecdysone receptor isoform-A in the hemimetabolous insect, Blatella germanica revealed by systemic RNAi invivo. Developmental Biology, 297, 158–171.

    Article  CAS  Google Scholar 

  27. Aljamali, M. N., Bior, A. D., Sauer, J. R., & Essenberg, R. C. (2003). RNA interference in ticks, a study using histamine binding protein dsRNA in the female tick, Amblyomma americanum. Insect Molecular Biology, 12, 299–305.

    Article  CAS  Google Scholar 

  28. Biessmann, H., Andronopoulou, E., Biessmann, M. R., Douris, V., Dimitratos, S. D., et al. (2010). The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS One, 5(3), e9471.

    Article  Google Scholar 

  29. Takken, W., & Knols, B. G. (1999). Odor-mediated behavior of Afrotropical malaria mosquitoes. Annual Review of Entomology, 44, 131–157.

    Article  CAS  Google Scholar 

  30. Hallen, E. A., Dahuanukar, A., & Carlson, J. R. (2006). Insect odor and taste receptors. Annual Review of Entomology, 51, 113–135.

    Article  Google Scholar 

  31. Vogt, R. G., & Riddiford, L. M. (1981). Pheromone binding and inactivation by moth antennae. Nature, 293, 161–163.

    Article  CAS  Google Scholar 

  32. Bohbot, J. D., & Dickens, J. C. (2010). Insect repellents, modulators of mosquito odorant receptor activity. PLoS One, 5, e12138.

    Article  Google Scholar 

  33. Feng, L., & Prestwich, G. D. (1997). Expression and characterization of a lepidopteran general odorant-binding protein. Insect Biochemistry and Molecular Biology, 27, 405–412.

    Article  CAS  Google Scholar 

  34. Zhang, S. G., Maida, R., & Steinbrecht, R. A. (2001). Immunolocalization of odorant-binding proteins in Noctuid moths insecta, Lepidoptera). Chemical Senses, 26, 885–896.

    Article  CAS  Google Scholar 

  35. Severine J (2005). Functional structure of insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs). Introductory paper no 167 Department of Ecology Chemical Ecology and Ecotoxicology, Lund.

  36. Miller, M. E., & Chourey, P. S. (1992). The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 4, 297–305.

    Article  CAS  Google Scholar 

  37. Hall, T. A. (1999). BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  38. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

  39. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA. 6, Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  40. Naito, Y., Tamuda, T., Mastumiya, T., Kumoko, U. T., Saigo, K., & Morihita, S. (2005). dsChech, highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Research, 33, 589–591.

    Article  Google Scholar 

  41. Sambrook, J., & Russell, D. W. (2001). Molecular cloning. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  42. Muller, J., Oehler, S., & Muller-Hill, B. (1996). Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. Journal of Molecular Biology, 257, 21–29.

    Article  CAS  Google Scholar 

  43. Upadhyay, S. K., Chandrashekar, K., Thakur, N., Verma, P. C., Borgio, J. F., Singh, P. K., & Tuli, R. (2011). RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. Journal of Bioscience, 36, 153–161.

    Article  CAS  Google Scholar 

  44. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., & Kubista, M. (2009). The MIQE guidelines-minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.

    Article  CAS  Google Scholar 

  45. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  Google Scholar 

  46. Krogh, A., Larsson, B., Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model, application to complete genomes. Journal of Molecular Biology, 305, 567–580.

    Article  CAS  Google Scholar 

  47. Pelletier, J., Guidolin, A., Syed, Z., Cornel, A. J., & Leal, W. S. (2010). Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. Journal of Chemical Ecology, 36, 245–248.

    Article  CAS  Google Scholar 

  48. Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., & Fuyama, Y. (2007). Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biology, 5(5), e118.

    Article  Google Scholar 

  49. Xu, P., Atkinson, R., Jones, D. N., & Smith, D. P. (2005). Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron, 45, 193–2000.

    Article  CAS  Google Scholar 

  50. Price, D. R., & Gatehouse, J. A. (2008). RNAi-mediated crop protection against insects. Trends in Biotechnology, 26, 393–400.

    Article  CAS  Google Scholar 

  51. Wan, P.J., Jia, S., Li, N., Fan, J.M., & Li, G.Q. (2014). RNA interference depletion of the halloween gene Disembodied implies its potential application for management of planthopper. Sogatella furcifera and Laodelphax striatellus. PLoS One, 9(1), e86675.

  52. Chen, J., Zhang, D., Yao, Q., Zhang, J., Dong, X., et al. (2010). Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper. Nilaparvata lugens. Insect Molecular Biology, 19, 777–786.

    Article  CAS  Google Scholar 

  53. Bautista, M. A., Anita, M., Miyata, T., Miura, K., & Tanaka, T. (2009). RNA interference mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology, 39, 38–46.

    Article  CAS  Google Scholar 

  54. Ren, X. L., Chen, R. R., Zhang, Y., Ma, Y., Cui, J. J., et al. (2013). A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement to Cry1Ca and Cry1Ac toxicity. Applied and Environmental Microbiology, 79, 5576–5583.

    Article  CAS  Google Scholar 

  55. Walshe, D. P., Lehane, S. M., Lehane, M. J., & Haines, L. R. (2009). Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Molecular Biology, 18, 11–19.

    Article  CAS  Google Scholar 

  56. Li, J., Chen, Q. H., Lin, Y. J., Jiang, T. R., Wu, G., et al. (2011). RNA interference in Nilaparvata lugens (Homoptera, Delphacidae) based on dsRNA ingestion. Pest Management Science, 67, 852–859.

    Article  CAS  Google Scholar 

  57. Singh, A. D., Wong, S., Ryan, C. P., & Whyard, S. (2013). Oral delivery of double stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti, Implications for pest mosquito control. Journal of Insect Science, 13, 69.

    Article  CAS  Google Scholar 

  58. Zhang, X., Zhang, J., & Zhu, K. (2010). Chitosan/double-stranded RNA nano-particle mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683–693.

    Article  Google Scholar 

  59. Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., et al. (2010). The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from. Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 40, 58–63.

    Article  CAS  Google Scholar 

  60. Meyering-Vos, M., & Muller, A. (2007). RNA interference suggests sulfakinins as satiety effectors in the cricket. Gryllus bimaculatus. Journal of Insect Physiology, 53, 840–848.

    Article  CAS  Google Scholar 

  61. Maori, E., Paldi, N., Shafir, S., Kalev, H., Tsur, E., et al. (2009). IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Molecular Biology, 18, 55–60.

    Article  CAS  Google Scholar 

  62. Li, X., Zhang, M., & Zhang, H. (2011). RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PloS One, 6, e17788.

    Article  CAS  Google Scholar 

  63. Zha, W., Peng, X., Chen, R., Du, B., Zhu, L., et al. (2011). Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect, Nilaparvata lugens. PloS One, 6, e20504.

    Article  CAS  Google Scholar 

  64. Zhang, Y., Li, S., Wang, L., Zi, J., He, P., et al. (2013). Overexpression of carboxylesterase-1 and mutation (F439H) of acetylcholinesterase-1 are associated with chlorpyrifos resistance in Laodelphax striatellus. Pesticide Biochemistry and Physiology, 106, 8–13.

    Article  CAS  Google Scholar 

  65. Sun, X. Q., Zhang, M. X., Yu, J. Y., Jin, Y., Ling, B., et al. (2013). Glutathione S-transferase of brown planthoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants. PloS One, 8(e64026), 13.

    Google Scholar 

  66. Lu, D. H., Wu, M., Pu, J., Zhang, Q., & Han, Z. J. (2013). A functional study of two dsRNA binding protein genes in Laodelphax striatellus. Pest Managment Science, 69(1), 034–1039.

    Google Scholar 

  67. Whyard, S., Singh, A. D., & Wong, S. (2009). Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39, 824–832.

    Article  CAS  Google Scholar 

  68. Araujo, R., Santos, A., Pinto, F., Gontijo, N., Lehane, M., et al. (2006). RNA interference of the salivary gland nitrophorin 2 in the triatomine bug, Rhodnius prolixus (Hemiptera, Reduviidae) by dsRNA ingestion or injection. Insect Biochemistry and Molecular Biology, 36, 683–693.

    Article  CAS  Google Scholar 

  69. Shakesby, A. J., Wallace, I. S., Isaacs, H. V., Pritchard, J., Roberts, D. M., et al. (2009). A water-specific aquaporin involved in aphid osmoregulation. Insect Biochemistry and Molecular Biology, 39, 1–10.

    Article  CAS  Google Scholar 

  70. Yao, J., Rotenberg, D., Afsharifar, A., Barandoc-Alviar, K., & Whitfield, A. E. (2013). Development of RNAi methods for Peregrinus maidis, the corn planthopper. PloS One, 8, e70243.

    Article  CAS  Google Scholar 

  71. Zhu, F., Xu, J., Palli, R., Ferguson, J., & Palli, S. R. (2011). Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Management Science, 67, 175–182.

    Article  CAS  Google Scholar 

  72. Wan, P. J., Lu, D., Guo, W. C., Ahmat, T., Yang, L., et al. (2013). Molecular cloning and characterization of a putative proline dehydrogenase gene in the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Science. doi:10.1111/1744- 791712034.

    Google Scholar 

  73. Zhou, L. T., Jia, S., Wan, P. J., Kong, Y., Guo, W. C., et al. (2013). RNA interference of a putative S-adenosyl-L-homocysteine hydrolase gene affects larval performance in. Leptinotarsa decemlineata (Say). Journal of Insect Physiology, 59, 1049–1056.

    Article  CAS  Google Scholar 

  74. Zhou, X., Wheeler, M. M., Oi, F. M., & Scharf, M. E. (2008). RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38, 805–815.

    Article  CAS  Google Scholar 

  75. Tomoyasu, Y., Miller, S. C., Tomita, S., Schoppmeier, M., Grossmann, D., & Bucher, G. (2008). Exploring systemic RNA interference in insects, a genome-wide survey for RNAi genes in Tribolium. Genome Biology, 9, R10.

    Article  Google Scholar 

  76. Zhou, Y. L., Zhu, X. Q., Gu, S. H., Cui, H. H., Guo, Y. Y., Zhou, J. J., & Zhang, Y. J. (2014). Silencing in Apolygus lucorum of the olfactory co-receptor Orco gene by RNA interference induces EAG response declining to two putative semiochemicals. Journal of Insect Physiology, 60, 31–39.

    Article  CAS  Google Scholar 

  77. Gu, L., & Knipple, D. C. (2013). Recent advances in RNA interference research in insects, Implications for future insect pest management strategies. Crop Protection, 45, 36–40.

    Article  CAS  Google Scholar 

  78. Wang, X. W., Zhao, Q. Y., Luan, J. B., Wang, Y. J., Yan, G. H., et al. (2012). Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics, 13, 529.

    Article  CAS  Google Scholar 

  79. Mao, J., & Zeng, F. (2012). Feeding-based RNA interference of a gap gene is lethal to the pea aphid, Acyrthosiphon pisum. PLoS One, 7, e48718.

    Article  CAS  Google Scholar 

  80. Zhao, Y. Y., Liu, F., Yang, G., & You, M. S. (2011). PsOr1, a potential target for RNA interference-based pest management. Insect Molecular Biology, 20, 97–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank ICAR, New Delhi for funding the project on 12th Plan Out Reach Program on Sucking Pests (ORP-SP). This work was supported by the Out Reach Program on Sucking Pests (ORP-SP) of Indian Council for Agricultural Research (ICAR), India. Our sincere thanks are due to The Director, IIHR, Bangalore for encouragement and the necessary facilities. The authors would like to thank for Dr. Sunil Joshi (National Bureau of Agricultural Insect Resources (NBAIR), Bangalore), for his help in morphological identification and effective advice on A. gossypii culture maintenance. Finally, we are very grateful to Dr. V. V. Ramamurthy (Indian Agricultural Research Institute (IARI), New Delhi) for his continuous support and suggestions for the course of this work. This work is a part of the Ph. D thesis of the senior author K. B. Rebijith.

Author Contributions

Conceived and designed the experiments: KBR, RA, HHR. Performed the experiments: KBR, HHR, JV. Analyzed the data: KBR, HHR. Contributed reagents/materials/analysis tools: KBR, RA, NB. Wrote the paper: KBR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. B. Rebijith or R. Asokan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Nucleotide sequence and corresponding amino acid sequences of A. gossypii OBP2 (AgOBP2). AgOBP2 protein composed of 243 amino acids. Arrows indicate the dsRNA region (Approx. 500 bp). (GIF 104 kb)

High resolution image (TIFF 2082 kb)

Supplementary Fig. 2

Successfully predicted signal peptide for AgOBP2 employing SignalP.4.1 showing output file with C- score (raw cleavage site score, S – score (Signal peptide score) and Y – score (Combined cleavage site). Arrow indicating the cleavage site, found in between S19 and S20. High C- and Y- scores observed for the position immediately after the cleavage site, i.e., the first position in the mature protein. The C- and S- scores are averages over five networks trained on different parts of the data. (GIF 92 kb)

High resolution image (TIFF 41 kb)

Supplementary Fig. 3

Tissue-specific expression profiles of AgOBP2 measured by qRT-PCR. The fold changes are relative to the transcript levels in the whole body. Standard errors represented by the error bars, and the asterisks above each bar indicate significant differences (P < 0.001). (GIF 20 kb)

High resolution image (TIFF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebijith, K.B., Asokan, R., Hande, H.R. et al. RNA Interference of Odorant-Binding Protein 2 (OBP2) of the Cotton Aphid, Aphis gossypii (Glover), Resulted in Altered Electrophysiological Responses. Appl Biochem Biotechnol 178, 251–266 (2016). https://doi.org/10.1007/s12010-015-1869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1869-7

Keywords

Navigation