Skip to main content
Log in

A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50–60 °C and 4–5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiquia-Arashiro, S. M., & Mormile, M. (2013). Sustainable technologies: bioenergy and biofuel from biowaste and biomass. Environmental Technology, 34, 1637–1638.

    Article  CAS  Google Scholar 

  2. Zhang, Y., Li, Q., Su, J., Lin, Y., Huang, Z., Lu, Y., Sun, G., Yang, M., Huang, A., Hu, H., & Zhu, Y. (2015). A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. Bioresource Technology, 177, 176–181.

    Article  CAS  Google Scholar 

  3. Zhao, X., Wang, W., & Wei, D. (2013). Identification of Petriella setifera LH and characterization of its crude carboxymethyl cellulase for application in denim Biostoning. Journal of Microbiology, 51, 82–87.

    Article  CAS  Google Scholar 

  4. Percival Zhang, Y. H., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  5. Andrić, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnology Advances, 28, 308–324.

    Article  Google Scholar 

  6. Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29, 419–425.

    Article  CAS  Google Scholar 

  7. Saini, R., Saini, J. K., Adsul, M., Patel, A. K., Mathur, A., Tuli, D., & Singhania, R. R. (2015). Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresource Technology, 188, 240–244.

    Article  CAS  Google Scholar 

  8. Chen, M., Qin, Y., Liu, Z., Liu, K., Wang, F., & Qu, Y. (2010). Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme and Microbial Technology, 46, 444–449.

    Article  CAS  Google Scholar 

  9. Castellanos, O. F., Sinitsyn, A. P., & Vlasenko, E. Y. (1995). Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresource Technology, 52, 119–124.

    Article  CAS  Google Scholar 

  10. Anbar, M., & Bayer, E. A. (2012). Approaches for improving thermostability characteristics in cellulases. Methods in Enzymology, 510, 261–271.

    Article  CAS  Google Scholar 

  11. Wu, I., & Arnold, F. H. (2013). Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnology and Bioengineering, 110, 1874–1883.

    Article  CAS  Google Scholar 

  12. Chen, H., Hayn, M., & Esterbauer, H. (1992). Purification and characterization of two extracellular β-glucosidases from Trichoderma reesei. Biochimica et Biophysica Acta, Protein Structure and Molecular Enzymology, 1121, 54–60.

    Article  CAS  Google Scholar 

  13. Igarashi, K., Uchihashi, T., Koivula, A., Wada, M., Kimura, S., Okamoto, T., Penttila, M., Ando, T., & Samejima, M. (2011). Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science, 333, 1279–1282.

    Article  CAS  Google Scholar 

  14. Jagtap, S. S., Dhiman, S. S., Kim, T. S., Li, J., Lee, J. K., & Kang, Y. C. (2013). Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina. Bioresource Technology, 133, 307–314.

    Article  CAS  Google Scholar 

  15. Jalak, J., Kurašin, M., Teugjas, H., & Väljamäe, P. (2012). Endo-exo synergism in cellulose hydrolysis revisited. The Journal of Biological Chemistry, 287, 28802–28815.

    Article  CAS  Google Scholar 

  16. Resch, M. G., Donohoe, B. S., Baker, J. O., Decker, S. R., Bayer, E. A., Beckham, G. T., & Himmel, M. E. (2013). Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy & Environmental Science, 6, 1858–1867.

    Article  CAS  Google Scholar 

  17. Hsieh, C. W. C., Cannella, D., Jørgensen, H., Felby, C., & Thygesen, L. G. (2014). Cellulase inhibition by high concentrations of monosaccharides. Journal of Agricultural and Food Chemistry, 62, 3800–3805.

    Article  CAS  Google Scholar 

  18. Vlasenko, E. Y., Ding, H., Labavitch, J. M., & Shoemaker, S. P. (1997). Enzymatic hydrolysis of pretreated rice straw. Bioresource Technology, 59, 109–119.

    Article  CAS  Google Scholar 

  19. Mandels, M., Hontz, L., & Nystrom, J. (1974). Enzymatic hydrolysis of waste cellulose. Biotechnology and Bioengineering, 16, 1471–1493.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  21. Gao, D., Chundawat, S. P., Krishnan, C., Balan, V., & Dale, B. E. (2010). Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresource Technology, 101, 2770–2781.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  23. Zhao, X., Wang, W., Wang, F., & Wei, D. (2012). A comparative study of β-1,4-endoglucanase (possessing β-1,4-exoglucanase activity) from Bacillus subtilis LH expressed in Pichia pastoris GS115 and Escherichia coli Rosetta (DE3). Bioresource Technology, 110, 539–545.

    Article  CAS  Google Scholar 

  24. Cheng, Y., Song, X., Qin, Y., & Qu, Y. (2009). Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. Journal of Applied Microbiology, 107, 1837–1846.

    Article  CAS  Google Scholar 

  25. Yao, G., Li, Z., Gao, L., Wu, R., Kan, Q., Liu, G., & Qu, Y. (2015). Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnology for Biofuels, 1, 1–17.

    Google Scholar 

  26. Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 99, 1417–1424.

    Article  CAS  Google Scholar 

  27. Pimentel, P. S. R., de Souza, A. L., Nascimento, A. T. R., de Andrade, E. V., Astolfi-Filho, S., & Nunes-Silva, C. G. (2014). Endo and exoglucanases produced by Penicillium citrinum isolated from Amazon. BMC Proceedings, 8, 179.

    Article  Google Scholar 

  28. de Castro, A. M., de Carvalho, M. L. D. A., Leite, S. G. F., & Pereira, N., Jr. (2010). Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. Journal of Industrial Microbiology & Biotechnology, 37, 151–158.

    Article  CAS  Google Scholar 

  29. Camassola, M., De Bittencourt, L. R., Shenem, N. T., Andreaus, J., & Dillon, A. J. P. (2004). Characterization of the cellulase complex of Penicillium echinulatum. Biocatalysis and Biotransformation, 22, 391–396.

    Article  CAS  Google Scholar 

  30. Ramani, G., Meera, B., Vanitha, C., Rao, M., & Gunasekaran, P. (2012). Production, purification, and characterization of a β-glucosidase of Penicillium funiculosum NCL1. Applied Biochemistry and Biotechnology, 167, 959–972.

    Article  CAS  Google Scholar 

  31. Gao, L., Gao, F., Wang, L., Geng, C., Chi, L., Zhao, J., & Qu, Y. (2012). N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. The Journal of Biological Chemistry, 287, 15906–15915.

    Article  CAS  Google Scholar 

  32. Wood, T. M., McCRAE, S. I., & Bhat, K. M. (1989). The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochemical Journal, 260, 37–43.

    Article  CAS  Google Scholar 

  33. Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high solids concentrations. Biotechnology and Bioengineering, 96, 862–870.

    Article  Google Scholar 

  34. Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnology for Biofuels, 2, 11.

    Article  Google Scholar 

  35. Felby, C. (2014). Water as a hydrolysis substrate: cellulase inhibition at high dissolved solids content // 36th Symposium on Biotechnology for Fuels and Chemicals.

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973, Program NO.2012CB721103), National High Technology Research and Development Program of China (863, Program NO.2012AA101806), National Natural Science Foundation of China (31360217), and Doctoral Starting up Foundation of Jiangxi Normal University (5451).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-hua Zhao or Dong-zhi Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Xh., Wang, W., Tong, B. et al. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide. Appl Biochem Biotechnol 178, 173–183 (2016). https://doi.org/10.1007/s12010-015-1866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1866-x

Keywords

Navigation