Skip to main content

Advertisement

Log in

Investigations into the Use of a Protein Sensor Assay for Metabolite Analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rapid and definitive classification of biological samples has application in industrial, agricultural, and clinical settings. Considerable effort has been given to analytical methods to address such applications over the past 50 years, with the majority of successful solutions focusing on a single molecular target. However, in many cases, a single or even a few features are insufficient for accurate characterization or classification. Serum albumin (SA) proteins are a class of cargo-carrying proteins in blood that have evolved to transport a wide variety of metabolites and peptides in mammals. These proteins have up to seven binding sites which communicate allosterically to orchestrate a complex pick-up and delivery system involving a large number of different molecules at any time. The ability of SA proteins to bind multiple molecular species in a sophisticated manner inspired the development of assays to differentiate complex biological solutions. The combination of SA and high-resolution liquid chromatography mass spectrometry (LC-MS) is showing exciting promise as a protein sensor assay (PSA) for classification of complex biological samples. In this study, the PSA has been applied to cells undergoing and recovering from mild oxidative stress. Analysis using traditional LC-MS-based metabolomics failed to differentiate samples into treatment or temporal groups, whereas samples first treated with the PSA were cleanly classified into both correct treatment and temporal groups. The success of the PSA could be attributed to selective binding of metabolites, leading to a reduction in sample complexity and a general reduction in chemical noise. Metabolites important to successful sample classification were often enriched by 100-fold or more yet displayed a wide range of affinities for SA. The end result of PSA treatment is better classification of samples with a reduction in the number of features seen overall. Together, these results demonstrate how the use of a protein-based assay before LC-MS analysis can greatly improve separation and lead to more accurate and successful tracking of the metabolic state in an organism, suggesting potential application in a wide range of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lay, J. O., Liyanage, R., Borgmann, S., & Wilkins, C. L. (2006). Problems with the “omics.”. Trends in Analytical Chemistry, 25(11), 1046–1056.

    Article  CAS  Google Scholar 

  2. Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2(4), 171–196.

    Article  CAS  Google Scholar 

  3. Kondo, T. (2014). Inconvenient truth: cancer biomarker development by using proteomics. Biochimica et Biophysica Acta, 1844(5), 861–865.

    Article  CAS  Google Scholar 

  4. Siuzdak, G. (2014). Mass spectrometry-based metabolomics as a unique biochemical approach for understanding disease pathogenesis. The FASEB Journal, 28, 350.3.

    Google Scholar 

  5. Hamerly, T., Heinemann, J., Tokmina-Lukaszewska, M., Lusczek, E. R., Mulier, K. E., Beilman, G. J., & Bothner, B. (2014). Bovine serum albumin as a molecular sensor for the discrimination of complex metabolite samples. Analytica Chimica Acta, 818, 61–66.

    Article  CAS  Google Scholar 

  6. Richieri, G. V., Anel, A., & Kleinfeld, A. M. (1993). Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry, 32(29), 7574–7580.

    Article  CAS  Google Scholar 

  7. Peters Jr., T. (1996). All about albumin. San Diego: Academic Press.

    Google Scholar 

  8. Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827–835.

    Article  CAS  Google Scholar 

  9. Curry, S., Brick, P., & Franks, N. P. (1999). Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochimica et Biophysica Acta, 1441(2–3), 131–140.

    Article  CAS  Google Scholar 

  10. Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Structural Biology, 3, 1–9.

    Article  Google Scholar 

  11. Fielding, L., Rutherford, S., & Fletcher, D. (2005). Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems. Magnetic resonance in chemistry: MRC, 43(6), 463–470.

    Article  CAS  Google Scholar 

  12. Nafisi, S., Bagheri Sadeghi, G., & PanahYab, A. (2011). Interaction of aspirin and vitamin C with bovine serum albumin. Journal of Photochemistry and Photobiology B: Biology, 105(3), 198–202.

    Article  CAS  Google Scholar 

  13. Reynolds, J., Herbert, S., & Steinhardt, J. (1968). The binding of some long-chain fatty acid anions and alcohols by bovine serum albumin. Biochemistry, 7(4), 1357–1361.

    Article  CAS  Google Scholar 

  14. Petitpas, I., Bhattacharya, A. A., Twine, S., East, M., & Curry, S. (2001). Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. The Journal of Biological Chemistry, 276(25), 22804–22809.

    Article  CAS  Google Scholar 

  15. Varshney, A., Sen, P., Ahmad, E., Rehan, M., Subbarao, N., & Khan, R. H. (2010). Review article ligand binding strategies of human serum albumin : how can the cargo be utilized? Chirality, 22(January 2009), 77–87.

    Article  CAS  Google Scholar 

  16. He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358, 209–215.

    Article  CAS  Google Scholar 

  17. Dockal, M. (2000). Conformational transitions of the three recombinant domains of human serum albumin depending on pH. Journal of Biological Chemistry, 275(5), 3042–3050.

    Article  CAS  Google Scholar 

  18. Fanali, G., di Masi, A., Trezza, V., Marino, M., Fasano, M., & Ascenzi, P. (2012). Human serum albumin: from bench to bedside. Molecular Aspects of Medicine, 33(3), 209–290.

    Article  CAS  Google Scholar 

  19. Petitpas, I., Gru, T., Bhattacharya, A. A., & Curry, S. (2001). Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. Journal of Molecular Biology, 314, 955–960.

    Article  CAS  Google Scholar 

  20. Heinemann, J., Hamerly, T., Maaty, W. S., Movahed, N., Steffens, J. D., Reeves, B. D., Hilmer, J. K., Therien, J., Grieco, P. A., Peters, P. W., & Bothner, B. (2014). Expanding the paradigm of thiol redox in the thermophilic root of life. Biochimica et Biophysica Acta, 1840(1), 80–85.

    Article  CAS  Google Scholar 

  21. Esser, D., Kouril, T., Zaparty, M., Sierocinski, P., Chan, P. P., Lowe, T., Van der Oost, J., Albers, S., Schomburg, D., Makarova, K. S., & Siebers, B. (2011). Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences. Extremophiles, 15(6), 711–712.

    Article  Google Scholar 

  22. Brock, T. D., Brock, K. M., Belly, R. T., & Weiss, R. L. (1972). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie, 84(1), 54–68.

    Article  CAS  Google Scholar 

  23. Woese, C. R. (1987). Bacterial evolution background. Microbiological Reviews, 51(2), 221–271.

    CAS  Google Scholar 

  24. Maaty, W. S., Wiedenheft, B., Tarlykov, P., Schaff, N., Heinemann, J., Robison-Cox, J., Valenzuela, J., Dougherty, A., Blum, P., Lawrence, C. M., Douglas, T., Young, M. J., & Bothner, B. (2009). Something old, something new, something borrowed; how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress. PloS One, 4(9), e6964.

    Article  Google Scholar 

  25. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239–247.

    Article  CAS  Google Scholar 

  26. Buttke, T. M., & Sandstrom, P. A. (1994). Oxidative stress as a mediator of apoptosis. Immunology Today, 15(1), 7–10.

    Article  CAS  Google Scholar 

  27. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  28. Core Team, R. (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  29. Tautenhahn, R., Boettcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504.

    Article  Google Scholar 

  30. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  Google Scholar 

  31. Tautenhahn, R., Patti, G. J., Kalisiak, E., Miyamoto, T., Schmidt, M., Lo, F. Y., McBee, J., Baliga, N. S., & Siuzdak, G. (2011). MetaXCMS: second-order analysis of untargeted metabolomics data. Analytical Chemistry, 83(3), 696–700.

    Article  CAS  Google Scholar 

  32. Adler, D., & Murdoch, D. (2012). rgl: 3D visualization device system (OpenGL).

  33. Addinsoft. (2013). XLSTAT. Addinsoft.

  34. Chen, H. (2013). VennDiagram: generate high-resolution Venn and Euler plots.

  35. Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1(1), 92–107.

    CAS  Google Scholar 

  36. Spector, A. A., John, K., & Fletcher, J. E. (1969). Binding of long-chain fatty acids to bovine serum albumin. Journal of Lipid Research, 10(1), 56–67.

    CAS  Google Scholar 

  37. Lowenthal, M. S., Mehta, A. I., Frogale, K., Bandle, R. W., Araujo, R. P., Hood, B. L., Veenstra, T. D., Conrads, T. P., Goldsmith, P., Fishman, D., Petricoin III, E. F., & Liotta, L. A. (2005). Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clinical Chemistry, 51(10), 1933–1945.

    Article  CAS  Google Scholar 

  38. Jupin, M., Michiels, P. J., Girard, F. C., Spraul, M., & Wijmenga, S. S. (2013). NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: fatty acids influence the HSA-metabolite interaction. Journal of Magnetic Resonance, 228, 81–94.

    Article  CAS  Google Scholar 

  39. Jupin, M., Michiels, P. J., Girard, F. C., Spraul, M., & Wijmenga, S. S. (2014). NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin. Journal of Magnetic Resonance, 239, 34–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Walid Maaty for advice on cell culture and stressing of S. solfataricus with hydrogen peroxide. The authors would also like to thank Dr. Jonathan Hilmer for his tireless efforts and mass spectrometry expertise. Tim Hamerly would like to recognize support from the Kopriva Graduate Fellowship at MSU. This work was supported by the National Science Foundation, MCB102248, through an award to Brian Bothner. The Proteomics, Metabolomics, and Mass Spectrometry facility at MSU received support from the Murdock Charitable Trust and NIH 5P20RR02437 of the CoBRE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Bothner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamerly, T., Bothner, B. Investigations into the Use of a Protein Sensor Assay for Metabolite Analysis. Appl Biochem Biotechnol 178, 101–113 (2016). https://doi.org/10.1007/s12010-015-1861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1861-2

Keywords

Navigation