Skip to main content

Advertisement

Log in

Comparison of Proliferative Effect of Human Lactoferrin and Its Proteolytic Peptide on Normal and Transformed Epithelial Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Human lactoferrin (hLF) is an iron-binding glycoprotein with a variety of functions. hLF undergoes proteolytic cleavage to smaller peptides in the stomach following ingestion. In the present study, we evaluated the effects of hLF and its proteolytic product, human lactoferrin peptide (hLFP), on the proliferation of two epithelial cells, HEK293 normal cells and KATO III gastric carcinoma cells, using an MTT assay and expression of proliferative nuclear cell antigen (PCNA), a notable proliferation marker. When the two epithelial cells were stimulated with hLF and hLFP in the presence of fetal bovine serum (FBS), hLFP stimulated proliferation of both cell types at lower concentrations than hLF by two orders of magnitude. The cancer cells exhibited proliferative responses to both hLF and hLFP at lower concentrations by 2∼3 orders of magnitude than the normal cells. Either hLF or hLFP alone did not support appreciable proliferation of these cell lines in the absence or low concentrations of FBS. Bovine serum albumin or its proteolytic product failed to promote cellular proliferation even in the presence of 10 % FBS, indicating the specificity of the proliferative activity of hLF and hLFP. These data highlight feasibility of hLF and its peptide for adjuvants for tissue culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

BSAP:

Pepsin-lysate of BSA

FBS:

Fetal bovine serum

LF:

Lactoferrin

LFP:

Lactoferrin-derived peptide

hLF:

human lactoferrin

hLFP:

Pepsin-lysate of human lactoferrin

PCNA:

Proliferating cell nuclear antigen

References

  1. Farnaud, S., & Evans, R. W. (2003). Lactoferrin—a multifunctional protein with antimicrobial properties. Molecular Immunology, 40, 395–405.

    Article  CAS  Google Scholar 

  2. Masson, P. L., & Heremans, D. F. (1971). Lactoferrin in milk from different species. Comparative Biochemistry and Physiology B, 39, 119–129.

    Article  CAS  Google Scholar 

  3. Gonzalez-Chavez, S. A., Arevalo-Gallegos, S., & Rascon-Cruz, Q. (2009). Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents, 33, 301.e1–301.e8. doi:10.1016/j.ijantimicag.2008.07.020.

    Article  CAS  Google Scholar 

  4. Garcia-Montaya, I. A., Cendon, T. S., Arevalo-Gallegos, S., & Rascon-Cruz, Q. (2012). Lactoferrin a multiple bioactive protein: an overview. Biochimica et Biophysica Acta, 1820, 226–236. doi:10.1016/j.bbagen.2011.06.018.

    Article  Google Scholar 

  5. Ellison, R. T., & Giehl, T. J. (1991). Killing of Gram-negative bacteria by lactoferrin and lysozyme. Journal of Clinical Investigation, 88, 1081–1091.

    Article  Google Scholar 

  6. Al-Nabulsi, A. A., & Holley, R. A. (2006). Enhancing the antimicrobial effects of bovine lactoferrin against Escherichia coli O157:H7 by cation chelation, NaCl, and temperature. Journal of Applied Microbiology, 100, 244–255.

    Article  CAS  Google Scholar 

  7. Montreuil, J., Tonnelat, J., & Mullet, S. (1960). Preparation and properties of lactosiderophilin (lactotransferrin) of human. Biochimica et Biophysica Acta, 45, 413–421.

    Article  CAS  Google Scholar 

  8. Morrison, M., & Allen, P. Z. (1966). Lactoperoxidase: identification and isolation from harderian and lacrimal glands. Science, 152, 1626–1628.

    Article  CAS  Google Scholar 

  9. Yanaihara, A., Toma, Y., Saito, H., & Yanaihara, T. (2000). Cell proliferation effect of lactoferrin in human endometrial stroma cells. Molecular Human Reproduction, 6, 469–473. doi:10.1093/molehr/6.5.469.

    Article  CAS  Google Scholar 

  10. Kim, C. W., Son, K. N., Choi, S. Y., & Kim, J. Y. (2006). Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration. FEBS Letters, 580, 4332–4336. doi:10.1016/j.febslet.2006.06.091.

    Article  CAS  Google Scholar 

  11. Buccigrossi, V., de Marco, G., Bruzzese, E., Ombarto, L., Bracale, I., & Polito, G. (2007). Lactoferrin induces concentration–dependent functional modulation of intestinal proliferation and differentiation. Pediatric Research, 61, 410–414.

    Article  CAS  Google Scholar 

  12. Lee, S. H., Hahm, D. H., Kim, J., & Choi, S. Y. (2009). Iron-saturated lactoferrin stimulates cell cycle progression through PI3K/Akt pathway. Molecules and Cells, 28, 37–42. doi:10.1007/s10059-009-0102-3.

    Article  CAS  Google Scholar 

  13. Yagi, M., Suzuki, N., Takayama, T., Arisue, M., Kodama, T., Yoda, Y., Otsuka, K., & Ito, K. (2009). Effects of lactoferrin on the differentiation of pluripotent mesenchymal cells. Cell Biology International, 33, 283–289. doi:10.1016/j.cellbi.2008.11.013.

    Article  CAS  Google Scholar 

  14. Tang, L., Cui, T., Wu, J. J., Liu-Mares, W., Huang, N., & Li, J. (2010). A rice-derived recombinant human lactoferrin stimulates fibroblast proliferation, migration, and sustains cell survival. Wound Repair and Regeneration, 18, 123–131. doi:10.1111/j.1524-5X.2009.00563.x.

    Article  Google Scholar 

  15. Jiang, R., & Lönnerdal, B. (2012). Apo- and holo-lactoferrin stimulates proliferation of mouse crypt cells but through different signaling pathways. International Journal of Biochemistry and Cell Biology, 44, 91–100. doi:10.1016/j.biocel.2011.10.002.

    Article  CAS  Google Scholar 

  16. Hagiwara, T., Shinoda, I., Fuluwatri, Y., & Shimamura, S. (1995). Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line IFC-18, in the presence of epidermal growth factor. Bioscience, Biotechnology, and Biochemistry, 59, 1875–1881.

    Article  CAS  Google Scholar 

  17. Ballow, M., Donshik, P. C., & Papaez, P. (1987). Tear lactoferrin levels in patients with external inflammatory ocular disease. Investigative Ophthalmology & Visual Science, 28, 543–545.

    CAS  Google Scholar 

  18. Azuma, N., Nori, H., Kaminogawa, S., & Yamauchi, K. (1989). Stimulatory effect of human lactoferrin on DNA synthesis in BALB/c3T3. Agricultural and Biological Chemistry, 53, 31–35.

    Article  CAS  Google Scholar 

  19. Amouric, M., Marvaldi, J., Pichon, J., Bellot, F., & Figarella, C. (1984). Effect of lactoferrin on the growth of a human colon adenocarcinoma cell line-comparison with transferrin. In Vitro, 20, 543–548. doi:10.1007/BF02639770.

    Article  CAS  Google Scholar 

  20. Yang, N., Strom, M. B., Mekonnen, S. M., Svendsen, J. S., & Rekdal, O. (2004). The effects of shortening lactoferrin derived peptides against tumor cells, bacteria and normal human cells. Journal of Peptide Science, 10, 37–46. doi:10.1002/osc.470.

    Article  CAS  Google Scholar 

  21. Mckeowon, S. T. W., Lundy, F. T., Nelson, J., Lockhart, D., Irwin, C. R., Cowan, C. G., & Marley, J. J. (2006). The cytotoxic effects of human neutrophil peptide-1(HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro. Oral Oncology, 42, 685–690. doi:10.1016/j.oraloncology.2005.11.005.

    Article  Google Scholar 

  22. Duarte, D. C., Nicolau, A., Teixeira, J. A., & Rodrigues, L. R. (2010). The effect of bovine milk lactoferrin on human breast cancer cell lines. Journal of Dairy Science, 94, 66–76. doi:10.3168/jds.2010-3629.

    Article  Google Scholar 

  23. Hurley, W. L., Hegarty, H. M., & Metzler, J. T. (1994). In vitro inhibition of mammary cell growth by lactoferrin; a comparative study. Life Science, 55, 1955–1963. doi:10.1016/0024-3205(94)00528-1.

    Article  CAS  Google Scholar 

  24. Blais, A., Fan, C., Voisin, T., Aattouri, N., Dubarry, M., Blachier, F., & Tome, D. (2014). Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study. Biometals, 27, 857–874. doi:10.1007/s10534-014-9779-7.

    Article  CAS  Google Scholar 

  25. Tomita, M., Wakabayashi, H., Shin, K., Yamauchi, K., Yaeshima, T., & Imatsuki, K. (2009). Twenty-five years of research on bovine lactoferrin application. Biochimie, 91, 52–57. doi:10.1016/j.biochi.2008.05.021.

    Article  CAS  Google Scholar 

  26. Sakai, T., Banno, Y., Kato, Y., Nozawa, Y., & Kawaguchi, M. (2005). Pepsin-digested bovine lactoferrin induces apoptotic cell death with JNK/SAPK activation in oral cancer cells. Journal of Pharmacological Science, 98, 41–48.

    Article  CAS  Google Scholar 

  27. Mader, J. S., Salsman, J., Conrad, D. M., & Hoskin, D. W. (2005). Bovine lactoferrin selectively induces apoptosis in human leukemia and carcinoma cell lines. Molecular Cancer Therapy, 4, 612–624.

    Article  CAS  Google Scholar 

  28. Freiburghaus, C., Janicke, B., Landmark-Mansson, H., Oredsson, S. M., & Paulsson, M. A. (2009). Lactoferrin treatment decreases the rate of cell proliferation of a human colon cancer cell line. Journal of Dairy Science, 92, 2477–2484. doi:10.3168/jds.2008-1851.

    Article  CAS  Google Scholar 

  29. Pan, W. R., Chen, P. W., Chen, Y. L. S., Hsu, H. C., Lin, C. C., & Chen, W. J. (2013). Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at al late stage. Journal of Dairy Science, 96, 7511–7520. doi:10.3168/jds.2013-7285.

    Article  CAS  Google Scholar 

  30. Murdock, C., Chinkindas, M. L., & Matthews, K. R. (2010). The pepsin hydrolysate of bovine lactoferrin causes a collapse of the membrane potential in Escherichia coli 157:H7. Probiotics and Antimicrobial Proteins, 2, 112–119. doi:10.1007/s12602-010-9039-2.

    Article  CAS  Google Scholar 

  31. Jo, J. H., Im, E. M., Kim, S. H., & Lee, H. H. (2011). Surface display of human lactoferrin using a phosphatidylinositol-anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnology Letters, 33, 1113–1120. doi:10.1007/s12275.014-4217-7.

    Article  CAS  Google Scholar 

  32. Hashizume, S., Kuroda, K., & Marakami, H. (1983). Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochimica et Biophysica Acta, 763, 377–382. doi:10.1016/0167-4889(83)90099-X.

    Article  CAS  Google Scholar 

  33. Nichols, B. L., McKee, K. S., Henry, J. F., & Putman, M. (1987). Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatric Research, 21, 563–567. doi:10.1203/00006450-198706000-00011.

    Article  CAS  Google Scholar 

  34. Nichols, B. L., McKee, K. S., Putman, M., Henry, J. F., & Nichols, V. N. (1989). Human lactoferrin supplementation of infant formulas increases thymidine incorporation into DNA of rat crypt cells. Journal of Pediatric Gastroenterology and Nutrition, 8, 102–109.

    Article  CAS  Google Scholar 

  35. Wakabayashi, H., Yamauchi, K., & Takase, M. (2006). Lactoferrin research, technology and applications. International Dairy Journal, 16, 1241–1251. doi:10.1016/j.idairyj.2006.06.013.

    Article  CAS  Google Scholar 

  36. Zheng, X., Baker, H., Hancock, W. S., Fawaz, F., McCaman, M., & Pungor Jr., E. (2006). Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnology Progress, 22, 1294–1300. doi:10.1021/bp060121o.

    Article  CAS  Google Scholar 

  37. Nakajima, K., Itoh, F., Nakamura, M., Kawamura, A., Yamazaki, T., Kozakai, T., Takusari, N., & Ishisaki, A. (2015). Short communication: opposing effects of lactoferrin on the proliferation of fibroblasts and epithelial cells from bovine mammary gland. Journal of Dairy Science, 98, 1069–1077. doi:10.3168/jds.2014-8430.

    Article  CAS  Google Scholar 

  38. Khono, Y., Shiraki, K., Mura, T., & Ikawa, S. (1993). Iron-saturated lactoferrin as a co-mitogenic substance for neonatal rat hepatocytes in primary culture. Acta Paediatrica, 82, 650–655.

    Article  Google Scholar 

  39. Huang, N., Bethell, D., Card, C., Cornish, J., Marchbank, T., Wyatt, D., Mabery, K., & Playford, R. (2008). Bioactive recombinant human lactoferrin, derived from rice, stimulates mammalian cell growth. In Vitro Cell & Developmental. Biology, 44, 464–471. doi:10.1007/s11626-008-9136-7.

    Article  CAS  Google Scholar 

  40. Baumrucker, C. R., Schanbacher, F., Shang, Y., & Green, M. H. (2005). Lactoferrin interaction with retinoid signaling cell growth and apoptosis in mammary cells. Domestic Animal Endocrinology, 30, 289–303. doi:10.1016/j.domaniendo.2005.07.009.

    Article  Google Scholar 

  41. Naot, D., Grey, A., Reid, I. R., & Cornish, J. (2005). Lactoferrin—a novel bone growth factor. Clinical Medicine and Research, 3, 93–101.

    Article  Google Scholar 

  42. Ando, K., Haegawa, K., Shindo, K., Furusawa, T., Fujino, T., Kogugawa, K., Nakano, H., Takeuchi, O., Akira, S., Akiyama, T., Gohda, J., Inoue, J., & Hayakawa, M. (2010). Human lactoferrin activates NF-kappaB through the toll-like 4 pathway while it interferes with the polysaccharide-stimulated TLR4 signaling. FEBS Journal, 277, 2051–2066. doi:10.1111/j.1742.4658.2010.07620x.

    Article  CAS  Google Scholar 

  43. Lee, C. C., Avalos, A. M., & Ptoegh, H. L. (2012). Accessory molecules for toll-like receptors and their function. Nature Review Immunology, 12, 168–179. doi:10.1038/nri3151.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the “Korean Small and Medium Business Administration” (Grant No 141106-703-C0020467). We thank this organization for their support.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Il Yup Chung or Hyune-Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, SM., Chung, I.Y., Jo, JH. et al. Comparison of Proliferative Effect of Human Lactoferrin and Its Proteolytic Peptide on Normal and Transformed Epithelial Cells. Appl Biochem Biotechnol 178, 44–57 (2016). https://doi.org/10.1007/s12010-015-1857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1857-y

Keywords

Navigation