Skip to main content
Log in

Kinetic Constants for Biological Ammonium and Nitrite Oxidation Processes Under Sulfide Inhibition

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inhibition of nitrification by sulfide was assessed using sludge obtained from a steady-state nitrifying reactor. Independent batch activity assays were performed with ammonium and nitrite as substrate, in order to discriminate the effect of sulfide on ammonium and nitrite oxidation. In the absence of sulfide, substrate affinity constants (K S,NH4  = 2.41 ± 0.11 mg N/L; K s, NO2  = 0.74 ± 0.03 mg N/L) and maximum specific rates (q max,NH4  = 0.086 ± 0.008 mg N/mg microbial protein h; q max,NO2  = 0.124 ± 0.001 mg N/mg microbial protein h) were determined. Inhibition of ammonium oxidation was no-competitive (inhibition constant (K i , NH4 ) of 2.54 ± 0.12 mg HS-S/L) while inhibition of nitrite oxidation was mixed (competitive inhibition constant (K’ i , NO2 ) of 0.22 ± 0.03 mg HS-S/L and no-competitive inhibition constant (K i , NO2 ) of 1.03 ± 0.06 mg HS-S/L). Sulfide has greater inhibitory effect on nitrite oxidation than ammonium oxidation, and its presence in nitrification systems should be avoided to prevent accumulation of nitrite. By simulating the effect of sulfide addition in a continuous nitrifying reactor under steady-state operation, it was shown that the maximum sulfide concentration that the sludge can tolerate without affecting the ammonium consumption efficiency and nitrate yield is 1 mg HS-S/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuenen, J. G., & Robertson, L. A. (1994). Combined nitrification-denitrification processes. FEMS Microbiology Reviews, 15, 109–117.

    Article  CAS  Google Scholar 

  2. Spieck, E., Ehrich, S., Aamand, J., & Bock, E. (1998). Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis. Archives of Microbiology, 169, 225–230.

    Article  CAS  Google Scholar 

  3. Arp, D. J., Sayavedra-Soto, L. A., & Hommes, N. G. (2002). Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology, 178, 250–255.

    Article  CAS  Google Scholar 

  4. Bernet, N., & Spérandio, M. (2009). Principles of nitrifying processes. In F. J. Cervantes (Ed.), Environmental technologies to treat nitrogen pollution: principles of nitrifying processes (pp. 23–37). London: IWA.

    Google Scholar 

  5. Pérez-Alfaro, J. E., Buitrón, G., Gomez, J., Texier, A.-C., & Cuervo-López, F. M. (2013). Kinetic and physiological evaluation of ammonium and nitrite oxidation processes in presence of 2-chlorophenol. Applied Biochemistry and Biotechnology, 169, 990–1000.

    Article  Google Scholar 

  6. Sears, K., Alleman, J. E., Barnard, J. L., & Oleszkiewicz, J. A. (2004). Impacts of reduced sulfur components on active and resting ammonia oxidizers. Journal of Industrial Microbiology and Biotechnology, 31, 369–378.

    Article  CAS  Google Scholar 

  7. Singh, S. N., & Verma, A. (2007). The potential of nitrification inhibitors to manage the pollution effect of nitrogen fertilizers in agricultural and other soils: a review. Environmental Practice, 9, 266–279.

    Article  CAS  Google Scholar 

  8. Texier, A.-C., Gómez, J., & Cuervo-López, F. M. (2013). Inhibitory, toxic and structure effects of toluene on microbial consortia involved in wastewater treatment. In M. C. Palminteri (Ed.), Toluene: chemical properties, applications and toxicology: Inhibitory, toxic and structure effects of toluene on microbial consortia involved in wastewater treatment (pp. 93–123). New York: Nova.

    Google Scholar 

  9. Nielsen, A. H., Vollertsen, J., & Hvitved-Jacobsen, T. (2006). Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature. Water Environment Research, 78, 275–283.

    Article  CAS  Google Scholar 

  10. Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, 44, 73–94.

    Article  CAS  Google Scholar 

  11. Zhou, Z., Xing, C., An, Y., Hu, D., Qiao, W., & Wang, L. (2014). Inhibitory effects of sulfide on nitrifying biomass in the anaerobic–anoxic–aerobic wastewater treatment process. Journal of Chemical Technology and Biotechnology, 89, 214–219.

    Article  CAS  Google Scholar 

  12. Bejarano Ortiz, D. I., Thalasso, F., Cuervo López, F. M., & Texier, A.-C. (2013). Inhibitory effect of sulfide on the nitrifying respiratory process. Journal of Chemical Technology and Biotechnology, 88, 1344–1349.

    Article  CAS  Google Scholar 

  13. McCarty, G. W. (1999). Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 29, 1–9.

    Article  CAS  Google Scholar 

  14. Keener, W. K., & Arp, D. J. (1993). Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Applied and Environmental Microbiology, 59, 2501–2510.

    CAS  Google Scholar 

  15. Hyman, M. R., & Wood, P. M. (1985). Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochemical Journal, 227, 719–725.

    Article  CAS  Google Scholar 

  16. Juliette, L. Y., Hyman, M. R., & Arp, D. J. (1993). Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Applied and Environmental Microbiology, 59, 3718–3727.

    CAS  Google Scholar 

  17. Gilch, S., Meyer, O., & Schmidt, I. (2009). A soluble form of ammonia monooxygenase in Nitrosomonas europaea. Biological Chemistry, 390, 863–873.

    Article  CAS  Google Scholar 

  18. Meincke, M., Bock, E., Kastrau, D., & Kroneck, P. M. H. (1992). Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Archives of Microbiology, 158, 127–131.

    Article  Google Scholar 

  19. Artiga, P., González, F., Mosquera-Corral, A., Campos, J. L., Garrido, J. M., Ficara, E., & Méndez, R. (2005). Multiple analysis reprogrammable titration analyser for the kinetic characterization of nitrifying and autotrophic denitrifying biomass. Biochemical Engineering Journal, 26, 176–183.

    Article  CAS  Google Scholar 

  20. Park, S., & Bae, W. (2009). Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochemistry, 44, 631–640.

    Article  CAS  Google Scholar 

  21. Liwarska-Bizukojc, E., & Bizukojc, M. (2012). A new approach to determine the kinetic parameters for nitrifying microorganisms in the activated sludge systems. Bioresource Technology, 109, 21–25.

    Article  CAS  Google Scholar 

  22. Silva, C. D., Gómez, J., Houbron, E., Cuervo-López, F. M., & Texier, A.-C. (2009). p-Cresol biotransformation by a nitrifying consortium. Chemosphere, 75, 1387–1391.

    Article  CAS  Google Scholar 

  23. Segel, I. H. (1993). Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems, Wiley-Interscience, New Ed edition.

  24. Bartlett, J. K., & Skoog, D. A. (1954). Colorimetric determination of elemental sulfur in hydrocarbons. Analytical Chemistry, 26, 1008–1011.

    Article  CAS  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  26. Khin, T., Gheewala, S. H., & Annachhatre, A. P. (2002). Modeling of nitrification inhibition with aniline in suspended-growth processes. Water Environment Research, 74, 531–540.

    Article  CAS  Google Scholar 

  27. Noophan, P., Figueroa, L. A., & Munakata-Marr, J. (2004). Nitrite oxidation inhibition by hydroxylamine: experimental and model evaluation. Water Science and Technology, 50, 295–304.

    CAS  Google Scholar 

  28. Ginestet, P., Audic, J. M., Urbain, V., & Block, J. C. (1998). Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide. Applied and Environmental Microbiology, 64, 2266–2268.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Council of Science and Technology of Mexico (CONACYT) (Grant No. SEP-CONACYT-CB-2011-01-165174). Diego I. Bejarano Ortiz received a fellowship from CONACYT (211547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Claire Texier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejarano-Ortiz, D.I., Huerta-Ochoa, S., Thalasso, F. et al. Kinetic Constants for Biological Ammonium and Nitrite Oxidation Processes Under Sulfide Inhibition. Appl Biochem Biotechnol 177, 1665–1675 (2015). https://doi.org/10.1007/s12010-015-1844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1844-3

Keywords

Navigation