Skip to main content
Log in

Simultaneous Removal of Phenol and Dissolved Solids from Wastewater Using Multichambered Microbial Desalination Cell

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial desalination cell (MDC) has great potential toward direct electricity generation from wastewater and concurrent desalination through potential difference developed due to microbial activity. Degradation of phenol by isolate Pseudomonas aeruginosa in anodic chamber and simultaneous desalination of water in middle desalination chamber of multichamber MDC is demonstrated in this study. Performance of the MDCs with different anodic inoculum conditions, namely pure culture of P. aeruginosa (MDC-1), 50 % v/v mixture of P. aeruginosa and anaerobic mixed consortia (MDC-2) and anaerobic mixed consortia (MDC-3), was evaluated to compare the phenol degradation in anodic chamber, bioelectricity generation, and simultaneous total dissolved solids (TDS) removal from saline water in desalination chamber. Synergistic effect between P. aeruginosa and mixed anaerobic consortia as inoculum was evident in MDC-2 demonstrating phenol degradation of 90 %, TDS removal of 75 % in 72 h of reaction time along with higher power generation of 27.5 mW/m2 as compared to MDC-1 (95 %, 64 %, 12.8 mW/m2, respectively) and MDC-3 (58 %, 52 %, 4.8 mW/m2, respectively). The results illustrate that the multichamber MDC-2 is effective for simultaneous removal of phenol and dissolved solids contained in industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song, T. S., Wu, X. Y., & Zhou, C. C. (2014). Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess and Biosystems Engineering, 37, 133–138.

    Article  CAS  Google Scholar 

  2. ElMekawy, A., Diels, L., Bertin, L., De Wever, H., & Pant, D. (2014). Potential biovalorization techniques for olive mill biorefinery wastewater. Biofuels, Bioproducts and Biorefining, 8, 283–293.

    Article  CAS  Google Scholar 

  3. Senthilvelan, T., Kanagaraj, J., Panda, R. C., & Mandal, A. B. (2014). Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technologies and Environmental Policy, 16, 113–126.

    Article  CAS  Google Scholar 

  4. Pant, D., Bogaert, G. V., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101, 1533–1543.

    Article  CAS  Google Scholar 

  5. ElMekawy, A., Srikanth, S., Bajracharya, S., Hegab, H. M., Nigam, P. S., Singh, A., Mohan, S. V., & Pant, D. (2015). Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Research International, 73, 213–225.

    Article  CAS  Google Scholar 

  6. Luo, H. P., Liu, G. L., Zhang, R. D., & Jin, S. (2009). Phenol degradation in microbial fuel cells. Chemical Engineering Journal, 147, 259–264.

    Article  CAS  Google Scholar 

  7. Friman, H., Schechter, A., Nitzan, Y., & Cahan, R. (2013). Phenol degradation in bio-electrochemical cells. International Biodeterioration and Biodegradation, 84, 155–160.

    Article  CAS  Google Scholar 

  8. Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., & Logan, B. E. (2009). A new method for water desalination using microbial desalination cells. Environmental Science and Technology, 43, 7148–7152.

    Article  CAS  Google Scholar 

  9. Mehanna, M., Saito, T., Yan, J., Hickner, M., Cao, X., Huang, X., & Logan, B. E. (2010). Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy and Environmental Science, 3, 1114–1120.

    Article  CAS  Google Scholar 

  10. Mehanna, M., Kiely, P. D., Call, D. F., & Logan, B. E. (2010). Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environmental Science and Technology, 44, 9578–9583.

    Article  CAS  Google Scholar 

  11. ElMekawy, A., Hegab, H. M., & Pant, D. (2014). The near-future integration of microbial desalination cells with reverse osmosis technology. Energy & Environmental Science, 7, 3921–3933.

    Article  CAS  Google Scholar 

  12. Kim, Y., & Logan, B. E. (2013). Microbial desalination cells for energy production and desalination. Desalination, 308, 122–130.

    Article  CAS  Google Scholar 

  13. Luo, H., Jenkins, P. E., & Ren, Z. (2011). Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environmental Science and Technology, 45, 340–344.

    Article  CAS  Google Scholar 

  14. He, Z., Huang, Y., Manohar, A. K., & Mansfeld, F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry, 74, 78–82.

    Article  CAS  Google Scholar 

  15. Luo, H., Xu, P., Roane, T. M., Jenkins, P. E., & Ren, Z. (2012). Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresource Technology, 105, 60–66.

    Article  CAS  Google Scholar 

  16. Meng, F., Jiang, J., Zhao, Q., Wang, K., Zhang, G., Fan, Q., Wei, L., Ding, J., & Zheng, Z. (2014). Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel. Bioresource Technology, 157, 120–126.

    Article  CAS  Google Scholar 

  17. Kalleary, S., Mohammed Abbas, F., Ganesan, A., Meenatchisundaram, S., Srinivasan, B., Packirisamy, A. S. B., & Muthusamy, S. (2014). Biodegradation and bioelectricity generation by microbial desalination cell. International Biodeterioration and Biodegradation, 92, 20–25.

    Article  CAS  Google Scholar 

  18. Behera, M., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 100, 5114–5121.

    Article  CAS  Google Scholar 

  19. Pradhan, H., & Ghangrekar, M. M. (2015). Organic matter and dissolved salts removal in a microbial desalination cell with different orientation of ion exchange membranes. Desalination and Water Treatment, 54, 1568–1576.

    CAS  Google Scholar 

  20. Jadhav, G. S., & Ghangrekar, M. M. (2008). Improving performance of MFC by design alteration and adding cathodic electrolytes. Applied Biochemistry and Biotechnology, 151, 319–332.

    Article  CAS  Google Scholar 

  21. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  22. Logan, B. E. (2008). Microbial Fuel Cells. Hoboken: Wiley.

    Google Scholar 

  23. Chen, X., Xia, X., Liang, P., Cao, X., Sun, H., & Huang, X. (2011). Stacked microbial desalination cells to enhance water desalination efficiency. Environmental Science and Technology, 45, 2465–2470.

    Article  CAS  Google Scholar 

  24. Vaszilcsin, N., & Nemes, M. (2009). Introduction to electrochemistry by problems (pp. 132–164). Timisoara: Politehnica Publishing House.

    Google Scholar 

  25. Jame, S. A., Rashidul Alam, A. K. M., Fakhruddin, A. N. M., & Alam, M. K. (2010). Degradation of phenol by mixed culture of locally isolated pseudomonas species. Journal of Bioremediation and Biodegradation, 1, 102. doi:10.4172/2155-6199.1000102.

    Article  CAS  Google Scholar 

  26. Walton, B. T., & Anderson, T. A. (1988). Structural properties of organic chemicals as predictors of biodegradation and microbial toxicity in soils. Chemosphere, 17, 1501–1507.

    Article  Google Scholar 

  27. Fang, H. H. P., Liang, D. W., Zhang, T., & Liu, Y. (2006). Anaerobic treatment of phenol in wastewater under thermophilic condition. Water Research, 40, 427–434.

    Article  CAS  Google Scholar 

  28. Levén, L., Nyberg, K., & Schnürer, A. (2012). Conversion of phenols during anaerobic digestion of organic solid waste–a review of important microorganisms and impact of temperature. Journal of Environmental Management, 95, S99–S103.

    Article  Google Scholar 

  29. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23, 291–298.

    Article  CAS  Google Scholar 

  30. Rabaey, K., Boon, N., Höfte, M., & Verstraete, W. (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science and Technology, 39, 3401–3408.

    Article  CAS  Google Scholar 

  31. Pradhan, H., & Ghangrekar, M. M. (2014). Multi-chamber microbial desalination cell for improved organic matter and dissolved solids removal from wastewater. Water Science and Technology, 70, 1948–1954.

    Article  CAS  Google Scholar 

  32. Chen, S., Luo, H., Hou, Y., Liu, G., Zhang, R., & Qin, B. (2015). Comparison of the removal of monovalent and divalent cations in the microbial desalination cell. Frontiers of Environmental Science and Engineering, 9, 317–323.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants received from the Department of Science and Technology, Government of India (File No. DST/TSG/NTS/2010/61) to undertake this work is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makarand M. Ghangrekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, H., Jain, S.C. & Ghangrekar, M.M. Simultaneous Removal of Phenol and Dissolved Solids from Wastewater Using Multichambered Microbial Desalination Cell. Appl Biochem Biotechnol 177, 1638–1653 (2015). https://doi.org/10.1007/s12010-015-1842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1842-5

Keywords

Navigation