Skip to main content
Log in

Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon–carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93 % yield and 99 % enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95–95, 85–79, and 2–25 %, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1–99, 20–84, 11–95, 5–99, and 3–24 %, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lanfranchi, E., Steiner, K., Glieder, A., Hajnal, I., Sheldon, R. A., van Pelt, S., & Winkler, M. (2013). Mini-review: recent developments in hydroxynitrile lyases for industrial biotechnology. Recent Patents on Biotechnology, 7, 197–206.

    Article  CAS  Google Scholar 

  2. Alagöz, D., Tükel, S. S., & Yildirim, D. (2014). Purification, immobilization and characterization of (R)-hydroxynitrile lyase from Prunus amygdalus turcomanica seeds and their applicability for synthesis of enantiopure cyanohydrins. Journal of Molecular Catalysis B: Enzymatic, 101, 40–46.

    Article  Google Scholar 

  3. Winkler, M., Glieder, A., & Steiner, K. (2012). Comprehensive chirality. In E. M. Carreira & H. Yamamoto (Eds.), C-X bond formation: hydroxynitrile lyases: from nature to application (Vol. 7, pp. 350–371). Amsterdam: Elsevier B.V.

    Google Scholar 

  4. Torrelo, G., van Midden, N., Stloukal, R., & Hanefeld, U. (2014). Immobilized hydroxynitrile lyase: a comparative study of recyclability. ChemCatChem, 6, 1096–1102.

    Article  CAS  Google Scholar 

  5. Hanefeld, U. (2013). Immobilisation of hydroxynitrile lyases. Chemical Society Reviews, 42, 6308–6321.

    Article  CAS  Google Scholar 

  6. Wehtje, E., Adlercreutz, P., & Mattiasson, B. (1988). Activity and operational stability of immobilized mandelonitrile lyase in methanol/water mixtures. Applied Microbiology and Biotechnology, 29, 419–425.

    Article  CAS  Google Scholar 

  7. Tükel, S. S., Yildirim, D., Alagöz, D., Alptekin, O., Yücebilgic, G., & Bilgin, R. (2010). Partial purification and immobilization of a new (R)-hydroxynitrile lyase from seeds of Prunus pseudoarmeniaca. Journal of Molecular Catalysis B: Enzymatic, 66, 161–165.

    Article  Google Scholar 

  8. Cui, J.-D., Zhang, S., & Sun, L.-M. (2012). Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of l-phenylalanine. Applied Biochemistry and Biotechnology, 167, 835–844.

    Article  CAS  Google Scholar 

  9. Illanes, A., Wilson, L., Caballero, E., Fernández-Lafuente, R., & Guisán, J. (2006). Crosslinked penicillin acylase aggregates for synthesis of β-lactam antibiotics in organic medium. Applied Biochemistry and Biotechnology, 133, 189–202.

    Article  CAS  Google Scholar 

  10. Barbosa, O., Torres, R., Ortiz, C., & Fernandez-Lafuente, R. (2012). Versatility of glutaraldehyde to immobilize lipases: effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochemistry, 47, 1220–1227.

    Article  CAS  Google Scholar 

  11. Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C., Fernández-Lafuente, R., & Guisán, J. M. (2006). Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 39, 877–882.

    Article  CAS  Google Scholar 

  12. Chmura, A., van Der Kraan, G. M., Kielar, F., van Langen, L. M., van Rantwijk, F., & Sheldon, R. A. (2006). Cross-linked aggregates of the hydroxynitrile lyase from Manihot esculenta: highly active and robust biocatalysts. Advanced Synthesis and Catalysis, 348, 1655–1661.

    Article  CAS  Google Scholar 

  13. Yildirim, D., Tükel, S. S., & Alagöz, D. (2014). Crosslinked enzyme aggregates of hydroxynitrile lyase partially purified from Prunus dulcis seeds and its application for the synthesis of enantiopure cyanohydrins. Biotechnology Progress, 30, 818–827.

    Article  CAS  Google Scholar 

  14. Yildirim, D., & Tükel, S. S. (2013). Immobilized Pseudomonas sp. lipase: a powerful biocatalyst for asymmetric acylation of (±)-2-amino-1-phenylethanols with vinyl acetate. Process Biochemistry, 48, 819–830.

    Article  CAS  Google Scholar 

  15. Gunda, N. S. K., Singh, M., Norman, L., Kaur, K., & Mitra, S. K. (2014). Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 305, 522–530.

    Article  CAS  Google Scholar 

  16. Ansari, S. A., Satar, R., Chibber, S., & Khan, M. J. (2013). Enhanced stability of Kluyveromyces lactis β galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 97, 258–263.

    Article  CAS  Google Scholar 

  17. Garcia-Galan, C., dos Santos, J. C. S., Barbosa, O., Torres, R., Pereira, E. B., Corberan, V. C., Gonçalves, L. R. B., & Fernandez-Lafuente, R. (2014). Tuning of Lecitase features via solid-phase chemical modification: effect of the immobilization protocol. Process Biochemistry, 49, 604–616.

    Article  CAS  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  19. Alptekin, Ö., Tükel, S. S., Yildirim, D., & Alagöz, D. (2011). Covalent immobilization of catalase onto spacer-arm attached modified florisil: characterization and application to batch and plug-flow type reactor systems. Enzyme and Microbial Technology, 49, 547–554.

    Article  CAS  Google Scholar 

  20. Hu, T.-G., Cheng, J.-H., Zhang, B.-B., Lou, W.-Y., & Zong, M.-H. (2015). Immobilization of alkaline protease on amino-functionalized magnetic nanoparticles and its efficient use for preparation of oat polypeptides. Industrial & Engineering Chemistry Research, 54, 4689–4698.

    Article  CAS  Google Scholar 

  21. Yildirim, D., Tükel, S. S., Alagöz, D., & Alptekin, Ö. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme and Microbial Technology, 49, 555–559.

    Article  CAS  Google Scholar 

  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  23. Blum, H., Beier, H., & Gross, H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93–99.

    Article  CAS  Google Scholar 

  24. van Langen, L. M., van Rantwijk, F., & Sheldon, R. A. (2003). Enzymatic hydrocyanation of a sterically hindered aldehyde. Optimization of a chemoenzymatic procedure for (R)-2-chloromandelic acid. Organic Process Research & Development, 7, 828–831.

    Article  Google Scholar 

  25. Ueatrongchit, T., Tamura, K., Ohmiya, T., H-Kittikun, A., & Asano, Y. (2010). Hydroxynitrile lyase from Passiflora edulis: purification, characteristics and application in asymmetric synthesis of (R)-mandelonitrile. Enzyme and Microbial Technology, 46, 456–465.

    Article  CAS  Google Scholar 

  26. Willeman, W. F., Hanefeld, U., Straathof, A. J. J., & Heijnen, J. J. (2000). Estimation of kinetic parameters by progress curve analysis for the synthesis of (R)-mandelonitrile by Prunus amygdalus hydroxynitrile lyase. Enzyme and Microbial Technology, 27, 423–433.

    Article  CAS  Google Scholar 

  27. Nanda, S., Kato, Y., & Asano, Y. (2005). A new (R)-hydroxynitrile lyase from Prunus mume: asymmetric synthesis of cyanohydrins. Tetrahedron, 61, 10908–10916.

    Article  CAS  Google Scholar 

  28. Roberge, C., Fleitz, F., Pollard, D., & Devine, P. (2007). Asymmetric synthesis of cyanohydrin derived from pyridine aldehyde with cross-linked aggregates of hydroxynitrile lyases. Tetrahedron Letters, 48, 1473–1477.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Cukurova University, Scientific Research Projects with the project number of IMYO2013BAP2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Alagöz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagöz, D., Tükel, S.S. & Yildirim, D. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis . Appl Biochem Biotechnol 177, 1348–1363 (2015). https://doi.org/10.1007/s12010-015-1819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1819-4

Keywords

Navigation