Skip to main content

Advertisement

Log in

Nitrate Starvation Induced Changes in Root System Architecture, Carbon:Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Improvement of nutrient use efficiency in cereal crops is highly essential not only to reduce the cost of cultivation but also to save the environmental pollution, reduce energy consumption for production of these chemical fertilizers, improve soil health, and ultimately help in mitigating climate change. In the present investigation, we have studied the morphological (with special emphasis on root system architecture) and biochemical responses (in terms of assay of the key enzymes involved in N assimilation) of two N-responsive wheat genotypes, at the seedling stage, under nitrate-optimum and nitrate-starved conditions grown in hydroponics. Expression profile of a few known wheat micro RNAs (miRNAs) was also studied in the root tissue. Total root size, primary root length, and first- and second-order lateral root numbers responded significantly under nitrate-starved condition. Morphological parameters in terms of root and shoot length and fresh and dry weight of roots and shoots have also been observed to be significant between N-optimum and N-starved condition for each genotypes. Nitrate reductase (NR), glutamine synthatase (GS), and glutamate dehydrogenase (GDH) activity significantly decreased under N-starved condition. Glutamine oxoglutarate amino transferase (GOGAT) and pyruvate kinase (PK) activity was found to be genotype dependent. Most of the selected miRNAs were expressed in root tissues, and some of them showed their differential N-responsive expression. Our studies indicate that one of the N-responsive genotype (NP-890) did not get affected significantly under nitrogen starvation at seedling stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kraiser, T., D. E. Gras., A. G. Gutie’rrez., B. Gonza’lez., and Gutie’rrez, R. A. (2009) A holistic view of nitrogen acquisition in plants. Journal of Experimental Botany 62, 1455–1466.

    Article  Google Scholar 

  2. Amiour, N., Imbaud, S., Clément, G., Agier, N., Zivy, M., Valot, B., Balliau, T., Armengaud, P., Quilleré, I., Cañas, R., Tercet-Laforgue, T., & Hirel, B. (2012). The use of metabolomics integrated with transcriptomic and proteomic studies identifying key steps involved in the control of nitrogen metabolism in crops such as maize. Journal of Experimental Botany, 63, 5017–5033.

    Article  CAS  Google Scholar 

  3. Liao, C., Peng, Y., Ma, W., Liu, R., Li, C., & Li, X. (2012). Proteomic analysis revealed nitrogen-mediated metabolic, developmental, and hormonal regulation of maize (Zea mays L.) ear growth. Journal of Experimental Botany, 63, 5275–5288.

    Article  CAS  Google Scholar 

  4. Smith, B. E. (2002). Nitrogenase reveals its inner secrets. Science, 297, 1654–1655.

    Article  CAS  Google Scholar 

  5. Hill, M. J., G. Hawksworth., and Tatterstall, G . (1973) Bacteria, nitrosamines and cancer of the stomach. British Journal of Cancer 28, 562–567.

    Article  CAS  Google Scholar 

  6. Weisenburger, D. D. (1991). Potential health consequences of ground-water contamination by nitrates in Nebraska. In I. Bogorad, & R. D. Kuzerka (Eds.), NATO ASI series G: Ecological Sciences 30 (p. 309). Berlin pp: Springer.

    Google Scholar 

  7. Abrol, Y. P., Chatterjee, S. R., Kumar, P. A., & Jain, V. (1999). Improvement in nitrogenous use efficiency: physiological and molecular approaches. Current Science, 76, 1357–1364.

    Google Scholar 

  8. NAAS (2005). Policy option for efficient nitrogen use. Policy paper no. 33 (p. 12). New Delhi:National Academy of Agricultural Sciences.

    Google Scholar 

  9. Hirel, B., Gouis, J. L., Ney, B., & Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 58, 2369–2387.

    Article  CAS  Google Scholar 

  10. Foulkes, M. J., Hawkesfordb, M. J., Barracloughb, P. B., Holdswortha, M. J., Kerr, J., Kightley, S., & Shewry, P. R. (2009). Identifying traits to improve the N economy of wheat: recent advances and future prospects. Field Crops Research, 114, 329–342.

    Article  Google Scholar 

  11. Monasterio, J. I., Sayre, K. D., Rajaram, S., & McMahon, M. (1997). Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science, 37, 898–904.

    Article  Google Scholar 

  12. Muchow, R. (1998). Nitrogen utilization efficiency in maize and grain sorghum. Field Crop Research, 56, 209–216.

    Article  Google Scholar 

  13. Le Gouis, J., D. Beghin., E. Heumez., and P. Pluchard. (2000) Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. European Journal of Agronomy 12,163–173.

    Article  Google Scholar 

  14. Presterl, T., Seitz, G., Landbeck, M., Thiemt, E. M., Schmidt, W., & Geiger, H. H. (2003). Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Science, 43, 1259–1265.

    Article  Google Scholar 

  15. Anbessa, Y., P. Juskiw, A. Good, J. Nyachiro., and Helm, J. (2009) Genetic variability in nitrogen use efficiency of spring barley. Crop Science 49, 1259–1269.

    Article  CAS  Google Scholar 

  16. Namai, S., Toriyama, K., & Fukuta, Y. (2009). Genetic variations in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breeding Science, 59, 269–276.

    Article  CAS  Google Scholar 

  17. Zhang, H., Guo, C., Li, C., & Xiao, K. (2008). Cloning, characterization and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Frontiers of Agriculture in China, 2, 141–149.

    Article  Google Scholar 

  18. Kellermier, F., Armengaud, P., Seditas, T. J., Danku, J., Salt, D. E., & Amtmann, A. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell, 26, 1480–1496.

    Article  Google Scholar 

  19. Hageman, R. H., and Hucklesby, D. P. (1971) Nitrate reductase from higher plants. 23, 491–503.

  20. Rowe, W. B., R. A. Ronzio, Y. P. Wellner, and Meister, A. (1970) Glutamine synthetase (sheep brain). in Methods in enzymology, Part A, 900–910.

  21. Mohanty, B., & Fletcher, J. S. (1980). Ammonium influence on nitrogen assimilating enzymes and protein accumulation in suspension cultures of Paul’s Scarlet rose. Physiologia Plantarum, 48, 453–459.

    Article  CAS  Google Scholar 

  22. Srere, P. A., Brazil, H., & Gonen, L. (1963). The citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chemica Scandinavica, 17, 1129–1134.

    Google Scholar 

  23. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3, 12. doi:10.1186/1746-4811-3-12.

    Article  Google Scholar 

  24. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., & Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179–e188.

    Article  Google Scholar 

  25. Marschner, H. (1995) Mineral nutrition of higher plants (2nd edn), (Academic Press).

  26. Scheible, W. R., Lauerer, M., Caboche, M., & Stitt, M. (1997). Accumulation of nitrate in the shoot acts as a signal to regulate shoot–root allocation in tobacco. The Plant Journal, 11, 671–691.

    Article  CAS  Google Scholar 

  27. Scheible, W. R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K., & Stitt, M. (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, 136, 2483–2499.

    Article  CAS  Google Scholar 

  28. Paul, M. J., & Driscoll, S. P. (1997). Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance. Plant, Cell & Environment, 20, 110–116.

    Article  CAS  Google Scholar 

  29. Linkohr, B. I., Williamson, L. C., Fitter, A. H., & Leyser, H. M. O. (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 29, 751–760.

    Article  CAS  Google Scholar 

  30. López-Bucio, J., Cruz-Ramírez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280–287.

    Article  Google Scholar 

  31. Gruber, B. D., Giehl, R. F. H., Friedel, S., & Wiren, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 168, 161–179.

    Article  Google Scholar 

  32. Krouk, G., Lacombe, B., Bielach, A., Perrine-Walker, F., Malinska, K., Mounier, E., Hoyerova, K., Tillard, P., Leon, S., & Ljung, K. (2010). Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell, 18, 927–937.

    Article  CAS  Google Scholar 

  33. Orman-Ligeza, B., Parizot, B., Gantet, P. P., Beeckman, T., Bennett, M. J., & Draye, X. (2013). Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Science, 18, 459–467.

    Article  CAS  Google Scholar 

  34. Giehl, R. F. H., Gruber, B. D., & von Wirén, N. (2014). It’s time to make changes: modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 65, 769–778.

    Article  CAS  Google Scholar 

  35. Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany (London), 112, 347–357.

    Article  CAS  Google Scholar 

  36. Lam, H. M., Coschigano, K., Oliveira, I. C., Melo-Oliveira, R., & Coruzzi, G. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 569–593.

    Article  CAS  Google Scholar 

  37. Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 105, 1141–1157.

    Article  Google Scholar 

  38. Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences of the United States of America, 101, 7833–1138.

    Article  CAS  Google Scholar 

  39. Kumar, R., Taware, R., Gaur, V. S., Guru, S. K., & Kumar, A. (2009). Influence of nitrogen on the expression of TaDof1 transcription factor in wheat and its relationship with photosynthetic and ammonium assimilating efficiency. Molecular Biology Reports, 36, 2209–2220.

    Article  CAS  Google Scholar 

  40. Howarth, R. W., Boyer, E. W., Pabich, W. J., & Galloway, J. N. (2002). Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio, 31, 88–96.

    Article  Google Scholar 

  41. Alston, J., B. Babcock, and Pardey, P. (2010) The shifting patterns of agricultural production and productivity worldwide (Iowa: Iowa State University, Ames)

  42. van Grinsven, H. J. M., Ten Berge, H. F. M., Dalgaard, T., Fraters, B., Durand, P., Hart, A., Hofman, G., Jacobsen, B. H., Lalor, S. T. J., Lesschen, J. P., Osterburg, B., Richards, K. G., Techen, A. K., Vertès, F., Webb, J., & Willems, W. J. (2012). Management, regulation and environmental impacts of nitrogen fertilization in north western Europe under the nitrates directive; a benchmark study. Biogeosciences, 9, 5143–5160.

    Article  Google Scholar 

  43. Chen, F., Fang, Z., Gao, Q., Ye, Y., Liang, J. L. L., Yuan, L., Mi, G., & Zhang, F. (2013). Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in north and northeast China. Science China. Life Sciences, 56, 552–560.

    Google Scholar 

  44. Osmont, K. S., Sibout, R., & Hardtke, C. S. (2007). Hidden branches: developments in root system architecture. Annual Review of Plant Biology, 58, 93–113.

    Article  CAS  Google Scholar 

  45. Pant, B. D., Buhtz, A., & Scheible, W. R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal, 53, 731–738.

    Article  CAS  Google Scholar 

  46. Xu, Z., Zhong, S., Li, X., Li, W., Rothstein, S. J., Zhang, S., Bi, Y., & Xie, C. (2011). Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One, 6, e28009.

    Article  CAS  Google Scholar 

  47. Liang, G., He, H., & Yu, D. (2012). Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One, 7, e48951..

    Article  Google Scholar 

  48. Kant, S., Peng, M., & Rothstein, S. J. (2011). Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genetics, 7, e1002021.

    Article  CAS  Google Scholar 

  49. Zhao, M., Tai, H., Sun, S., Zhang, F., Xu, Y., & Li, W. X. (2012). Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One, 7, e29669.

    Article  CAS  Google Scholar 

  50. Wang, Y., Zhang, C., Hao, Q., Sha, A., Zhou, R., Zhou, X., & Yuan, L. (2013). Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One, 8, e67423.

    Article  CAS  Google Scholar 

  51. Allen, R. S., Li, J., Stahle, M. I., Dubroue, A., Gubler, F., & Millar, A. A. (2007). Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proceedings of the National Academy of Sciences of the United States of America, 104, 16371–16376.

    Article  CAS  Google Scholar 

  52. Guo, H. S., Xie, Q., Fei, J. F., & Chua, N. H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17, 1376–1386.

    Article  CAS  Google Scholar 

  53. Ren, L., & Tang, G. (2012). Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in and SPL7-dependent and independent manner in Arabidopsis thaliana. Plant Science, 187, 59–68.

    Article  CAS  Google Scholar 

  54. Kurtoglu, K. Y., Kantar, M., Lucas, S. J., & Budak, H. (2013). Unique and conserved MicroRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One, 8(7), e69801.

    Article  CAS  Google Scholar 

  55. Fageria, N.K. (2014) Management practices to improve nitrogen use efficiency in crop plants. In: Nitrogen management in crop production. CRP. Taylor and Francis Group. Boca Raton, FL 33487-2742. pp.327–398.

Download references

Acknowledgments

Financial assistance from CIMMYT under Wheat Competitive Grants and NRCPB, New Delhi Institutional funds, is highly acknowledged. Authors would like to thank the Project Directors of ICAR-NRCPB, New Delhi, and ICAR-DWR, Karnal, for their support and encouragement at various levels to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S.K., Rani, M., Bansal, N. et al. Nitrate Starvation Induced Changes in Root System Architecture, Carbon:Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes. Appl Biochem Biotechnol 177, 1299–1312 (2015). https://doi.org/10.1007/s12010-015-1815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1815-8

Keywords

Navigation