Skip to main content
Log in

Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Filamentous fungi such as Aspergillus spp., Trichoderma spp., and Penicillium spp. are frequently used to produce high concentrations of lignocellulosic enzymes. This study examined the discrepancies in the compositions and dynamic changes in the extracellular enzyme systems secreted by Aspergillus niger ATCC1015, Trichoderma reesei QM9414, and Penicillium oxalicum 114-2 cultured on corn stover and wheat bran. The results revealed different types and an abundance of monosaccharides and oligosaccharides were released during incubation, which induced the secretion of diverse glycoside hydrolases. Both the enzyme activities and isozyme numbers of the three fungal strains increased with time. A total of 279, 161, and 183 secretory proteins were detected in A. niger, T. reesei, and P. oxalicum secretomes, respectively. In the A. niger secretomes, more enzymes involved in the degradation of (galacto)mannan, xyloglucan, and the backbone of pectin distributed mostly in dicots were detected. In comparison, although P. oxalicum 114-2 hardly secreted any xyloglucanases, the diversities of enzymes involved in the degradation of xylan and β-(1,3;1,4)-d-glucan commonly found in monocots were higher. The cellulase system of P. oxalicum 114-2 was more balanced. The degradation preference provided a new perspective regarding the recomposition of lignocellulosic enzymes based on substrate types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adav, S. S., Chao, L. T. and Sze, S. K. (2012) Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Molecular & Cellular Proteomics, 11, M111. 012419.

  2. Adav, S. S., Li, A. A., Manavalan, A., Punt, P., & Sze, S. K. (2010). Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. Journal of Proteome Research, 9, 3932–3940.

    Article  CAS  Google Scholar 

  3. Alfaro, M., Oguiza, J. A., Ramírez, L., & Pisabarro, A. G. (2014). Comparative analysis of secretomes in basidiomycete fungi. Journal of Proteomics, 102, 28–43.

    Article  CAS  Google Scholar 

  4. Andersen, M. R., Giese, M., Ronald, P., & Nielsen, J. (2012). Mapping the polysaccharide degradation potential of Aspergillus niger. BMC Genomics, 13, 313.

    Article  CAS  Google Scholar 

  5. Braaksma, M., Martens-Uzunova, E. S., Punt, P. J., & Schaap, P. J. (2010). An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics, 11, 584.

    Article  Google Scholar 

  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  7. Burton, R. A., Gidley, M. J., & Fincher, G. B. (2010). Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology, 6, 724–732.

    Article  CAS  Google Scholar 

  8. Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2, 121–145.

    Article  CAS  Google Scholar 

  9. Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6, 850–861.

    Article  CAS  Google Scholar 

  10. da Costa Sousa, L., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20, 339–347.

    Article  Google Scholar 

  11. Delmas, S., Pullan, S. T., Gaddipati, S., Kokolski, M., Malla, S., Blythe, M. J., Ibbett, R., Campbell, M., Liddell, S., & Aboobaker, A. (2012). Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genetics, 8, e1002875.

    Article  CAS  Google Scholar 

  12. DeMartini, J. D., Pattathil, S., Miller, J. S., Li, H., Hahn, M. G., & Wyman, C. E. (2013). Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy & Environmental Science, 6, 898–909.

    Article  CAS  Google Scholar 

  13. Dodd, D., & Cann, I. K. (2009). Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy, 1, 2–17.

    Article  CAS  Google Scholar 

  14. Doyle, S. (2011). Fungal proteomics: from identification to function. FEMS Microbiology Letters, 321, 1–9.

    Article  CAS  Google Scholar 

  15. Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., Goedegebuur, F., Houfek, T. D., England, G. J., & Kelley, A. S. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278, 31988–31997.

    Article  Google Scholar 

  16. Gao, D., Uppugundla, N., Chundawat, S. P., Yu, X., Hermanson, S., Gowda, K., Brumm, P., Mead, D., Balan, V., & Dale, B. E. (2011). Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnology for Biofuels, 4, 5.

    Article  CAS  Google Scholar 

  17. Gao, P., Qu, Y., Zhao, X., Zhu, M., & Duan, Y. (1997). Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed. Enzyme & Microbial Technology, 20, 581–584.

    Article  CAS  Google Scholar 

  18. Girard, V., Dieryckx, C., Job, C., & Job, D. (2013). Secretomes: the fungal strike force. Proteomics, 13, 597–608.

    Article  CAS  Google Scholar 

  19. Glass, N. L., Schmoll, M., Cate, J. H., & Coradetti, S. (2013). Plant cell wall deconstruction by ascomycete fungi. Annual Review of Microbiology, 67, 477–498.

    Article  CAS  Google Scholar 

  20. Griffin, T. J., Gygi, S. P., Ideker, T., Rist, B., Eng, J., Hood, L., & Aebersold, R. (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 1, 323–333.

    Article  CAS  Google Scholar 

  21. Häkkinen, M., Arvas, M., Oja, M., Aro, N., Penttilä, M., Saloheimo, M., & Pakula, T. M. (2012). Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microbial Cell Factories, 11, 134.

    Article  Google Scholar 

  22. Henrissat, B., Coutinho, P. M. and Davies, G. J. (2001), in Plant cell walls, Springer, pp. 55–72.

  23. Herold, S., Bischof, R., Metz, B., Seiboth, B., & Kubicek, C. P. (2013). Xylanase gene transcription in Trichoderma reesei is triggered by different inducers representing different hemicellulosic pentose polymers. Eukaryotic Cell, 12, 390–398.

    Article  CAS  Google Scholar 

  24. Herpoel-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Molle, D., Lignon, S., Mathis, H., Sigoillot, J. C., Monot, F., & Asther, M. (2008). Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnology for Biofuels, 1, 18.

    Article  Google Scholar 

  25. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  26. Jiang, L., He, L., & Fountoulakis, M. (2004). Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Journal of Chromatography A, 1023, 317–320.

    Article  CAS  Google Scholar 

  27. Juhasz, T., Szengyel, Z., Reczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40, 3519–3525.

    Article  CAS  Google Scholar 

  28. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227, 680–685.

    Article  CAS  Google Scholar 

  29. Lahjouji, K., Storms, R., Xiao, Z., Joung, K.-B., Zheng, Y., Powlowski, J., Tsang, A., & Varin, L. (2007). Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Applied Microbiology and Biotechnology, 75, 337–346.

    Article  CAS  Google Scholar 

  30. Liao, H., Li, S., Wei, Z., Shen, Q., & Xu, Y. (2014). Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate. Biotechnology for Biofuels, 7, 162.

    Article  Google Scholar 

  31. Liepman, A. H., Wightman, R., Geshi, N., Turner, S. R., & Scheller, H. V. (2010). Arabidopsis—a powerful model system for plant cell wall research. The Plant Journal, 61, 1107–1121.

    Article  CAS  Google Scholar 

  32. Liu, D., Li, J., Zhao, S., Zhang, R., Wang, M., Miao, Y., Shen, Y., & Shen, Q. (2013). Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnology for Biofuels, 6, 1–16.

    Article  Google Scholar 

  33. Liu, G., Zhang, L., Wei, X., Zou, G., Qin, Y., Ma, L., Li, J., Zheng, H., Wang, S. and Wang, C. (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PloS One, 8, e55185.

  34. Martens-Uzunova, E. S., & Schaap, P. J. (2009). Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genetics and Biology, 46, S170–S179.

    Article  CAS  Google Scholar 

  35. Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., Chapman, J., Chertkov, O., Coutinho, P. M., & Cullen, D. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26, 553–560.

    Article  CAS  Google Scholar 

  36. Marx, I. J., van Wyk, N., Smit, S., Jacobson, D., Viljoen-Bloom, M., & Volschenk, H. (2013). Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnology for Biofuels, 6, 1–13.

    Article  Google Scholar 

  37. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  38. Parry, N., Beever, D., OWEN, E., VANDENBERGHE, I., Van Beeumen, J., & Bhat, M. (2001). Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. The Biochemical Journal, 353, 117–127.

    Article  CAS  Google Scholar 

  39. Pel, H. J., de Winde, J. H., Archer, D. B., Dyer, P. S., Hofmann, G., Schaap, P. J., Turner, G., de Vries, R. P., Albang, R., Albermann, K., Andersen, M. R., Bendtsen, J. D., Benen, J. A., van den Berg, M., Breestraat, S., Caddick, M. X., Contreras, R., Cornell, M., Coutinho, P. M., Danchin, E. G., Debets, A. J., Dekker, P., van Dijck, P. W., van Dijk, A., Dijkhuizen, L., Driessen, A. J., d'Enfert, C., Geysens, S., Goosen, C., Groot, G. S., de Groot, P. W., Guillemette, T., Henrissat, B., Herweijer, M., van den Hombergh, J. P., van den Hondel, C. A., van der Heijden, R. T., van der Kaaij, R. M., Klis, F. M., Kools, H. J., Kubicek, C. P., van Kuyk, P. A., Lauber, J., Lu, X., van der Maarel, M. J., Meulenberg, R., Menke, H., Mortimer, M. A., Nielsen, J., Oliver, S. G., Olsthoorn, M., Pal, K., van Peij, N. N., Ram, A. F., Rinas, U., Roubos, J. A., Sagt, C. M., Schmoll, M., Sun, J., Ussery, D., Varga, J., Vervecken, W., van de Vondervoort, P. J., Wedler, H., Wosten, H. A., Zeng, A. P., van Ooyen, A. J., Visser, J., & Stam, H. (2007). Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 25, 221–231.

    Article  Google Scholar 

  40. Qu, Y., Gao, P., & Wang, Z. (1984). Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta Mycol Sinica, 3, 238–243.

    Google Scholar 

  41. Ribeiro, D. A., Cota, J., Alvarez, T. M., Bruchli, F., Bragato, J., Pereira, B. M., Pauletti, B. A., Jackson, G., Pimenta, M. T., Murakami, M. T., Camassola, M., Ruller, R., Dillon, A. J., Pradella, J. G., Paes Leme, A. F. and Squina, F. M. (2012) The Penicillium echinulatum secretome on sugar cane bagasse. PloS One, 7, e50571.

  42. Ribeiro, D. A., Cota, J., Alvarez, T. M., Bruechli, F., Bragato, J., Pereira, B. M., Pauletti, B. A., Jackson, G., Pimenta, M. T., & Murakami, M. T. (2012). The Penicillium echinulatum secretome on sugar cane bagasse. PloS One, 7, e50571.

    Article  CAS  Google Scholar 

  43. Saykhedkar, S., Ray, A., Ayoubi-Canaan, P., Hartson, S. D., Prade, R., & Mort, A. J. (2012). A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnology for Biofuels, 5, 52.

    Article  CAS  Google Scholar 

  44. Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263–289.

    Article  CAS  Google Scholar 

  45. Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87, 787–799.

    Article  CAS  Google Scholar 

  46. Sriranganadane, D., Waridel, P., Salamin, K., Reichard, U., Grouzmann, E., Neuhaus, J. M., Quadroni, M., & Monod, M. (2010). Aspergillus protein degradation pathways with different secreted protease sets at neutral and acidic pH. Journal of Proteome Research, 9, 3511–3519.

    Article  CAS  Google Scholar 

  47. Stricker, A. R., Mach, R. L., & De Graaff, L. H. (2008). Regulation of transcription of cellulases-and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 78, 211–220.

    Article  CAS  Google Scholar 

  48. Sweeney, M. D., & Xu, F. (2012). Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts, 2, 244–263.

    Article  CAS  Google Scholar 

  49. van den Brink, J., & de Vries, R. P. (2011). Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 91, 1477–1492.

    Article  CAS  Google Scholar 

  50. Wilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology, 14, 259–263.

    Article  CAS  Google Scholar 

  51. Xing, S., Li, G., Sun, X., Ma, S., Chen, G., Wang, L., & Gao, P. (2013). Dynamic changes in xylanases and β-1, 4-endoglucanases secreted by Aspergillus niger An-76 in response to hydrolysates of lignocellulose polysaccharide. Applied Biochemistry and Biotechnology, 171, 832–846.

    Article  CAS  Google Scholar 

  52. Zhang, Q., Zhang, X., Wang, P., Li, D., Chen, G., Gao, P. and Wang, L. (2014) Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis.

  53. Zhang, X., Liu, N., Yang, F., Li, J., Wang, L., Chen, G., & Gao, P. (2012). In situ demonstration and quantitative analysis of the intrinsic properties of glycoside hydrolases. Electrophoresis, 33, 280–287.

    Article  Google Scholar 

  54. Zhang, Y.-H. P., & Lynd, L. R. (2003). Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Analytical Biochemistry, 322, 225–232.

    Article  CAS  Google Scholar 

  55. Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6, 465–482.

    Article  CAS  Google Scholar 

  56. Zhao, Z., Liu, H., Wang, C., & Xu, J.-R. (2013). Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 14, 274.

    Article  CAS  Google Scholar 

  57. Zhou, J.-Y., Schepmoes, A. A., Zhang, X., Moore, R. J., Monroe, M. E., Lee, J. H., Camp, D. G., Smith, R. D., & Qian, W.-J. (2010). Improved LC−MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. Journal of Proteome Research, 9, 5698–5704.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushan Wang.

Electronic supplementary material

Figure S1

Dynamic zymography of the extracellular proteases of the three filamentous fungal strains during the 5-day solid-state fermentation. (TIFF 1985 kb)

Figure S2

Enzymes related to the degradation of cellulose, hemicellulose (xyloglucan, galactomannan, xylan, and (1,3;1,4)-β-d-glucan), and pectin (homogalacturon, xylogalacturonan, and rhamnogalacturon І) detected in the secretomes. The number of plus signs (+) with different colors represents the number of specific enzymes in different strains. (TIFF 2086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Zhang, H., Liu, S. et al. Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation. Appl Biochem Biotechnol 177, 1252–1271 (2015). https://doi.org/10.1007/s12010-015-1811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1811-z

Keywords

Navigation