Skip to main content
Log in

Cloning, Expression, and Characterization of Capra hircus Golgi α-Mannosidase II

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Golgi α-mannosidase II (GMII), a key glycosyl hydrolase in the N-linked glycosylation pathway, has been demonstrated to be closely associated with the genesis and development of cancer. In this study, we cloned cDNA-encoding Capra hircus GMII (chGMII) and expressed it in Pichia pastoris expression system. The chGMII cDNA contains an open reading frame of 3432 bp encoding a polypeptide of 1144 amino acids. The deduced molecular mass and pI of chGMII was 130.5 kDa and 8.04, respectively. The gene expression profile analysis showed GMII was the highest expressed gene in the spleen. The recombinant chGMII showed maximum activity at pH 5.4 and 42 °C and was activated by Fe2+, Zn2+, Ca2+, and Mn2+ and strongly inhibited by Co2+, Cu2+, and EDTA. By homology modeling and molecular docking, we obtained the predicted 3D structure of chGMII and the probable binding modes of chGMII-GnMan5Gn, chGMII-SW. A small cavity containing Tyr355 and zinc ion fixed by residues Asp290, His176, Asp178, and His570 was identified as the active center of chGMII. These results not only provide a clue for clarifying the catalytic mechanism of chGMII but also lay a theoretical foundation for subsequent investigations in the field of anticancer therapy for mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhong, W., Kuntz, D. A., Ember, B., Singh, H., Moremen, K. W., Rose, D. R., & Boons, G. J. (2008). Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant. Journal of the American Chemical Society, 130, 8975–8983.

    Article  CAS  Google Scholar 

  2. Feizi, T. (1985). Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature, 314, 53–57.

    Article  CAS  Google Scholar 

  3. M. Misago, Y. F. Liao, S. Kudo, S. Eto, M. G. Mattei, K. W. Moremen & M. N. Fukuda (1995). Molecular cloning and expression of cDNAs encoding human alpha-mannosidase II and a previously unrecognized alpha-mannosidase IIx isozyme. Proc. Natl. Acad. Sci. U. S. A, 92, 11766–11770.

  4. van den Elsen, J. M., Kuntz, D. A., & Rose, D. R. (2001). Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. The EMBO Journal, 20, 3008–3017.

    Article  Google Scholar 

  5. Dennis, J. W., & Laferte, S. (1985). Recognition of asparagine-linked oligosaccharides on murine tumor cells by natural killer cells. Cancer Research, 45, 6034–6040.

    CAS  Google Scholar 

  6. Kiyohara, T., Dennis, J. W., & Roder, J. C. (1987). Double restriction in NK cell recognition is linked to transmethylation and can be triggered by asparagine-linked oligosaccharides on tumor cells. Cellular Immunology, 106, 223–233.

    Article  CAS  Google Scholar 

  7. Rose, D. R. (2012). Structure, mechanism and inhibition of Golgi alpha-mannosidase II. Current Opinion in Structural Biology, 22, 558–562.

    Article  CAS  Google Scholar 

  8. Thompson, A. J., Williams, R. J., Hakki, Z., Alonzi, D. S., Wennekes, T., Gloster, T. M., Songsrirote, K., Thomas-Oates, J. E., Wrodnigg, T. M., Spreitz, J., Stutz, A. E., Butters, T. D., Williams, S. J., & Davies, G. J. (2012). Structural and mechanistic insight into N-glycan processing by endo-alpha-mannosidase. Proceedings of the National Academy of Sciences of the United States of America, 109, 781–786.

    Article  CAS  Google Scholar 

  9. Polakova, M., Sestak, S., Lattova, E., Petrus, L., Mucha, J., Tvaroska, I., & Kona, J. (2011). Alpha-D-mannose derivatives as models designed for selective inhibition of Golgi alpha-mannosidase II. European Journal of Medicinal Chemistry, 46, 944–952.

    Article  CAS  Google Scholar 

  10. Kuntz, D. A., Nakayama, S., Shea, K., Hori, H., Uto, Y., Nagasawa, H., & Rose, D. R. (2010). Structural investigation of the binding of 5-substituted swainsonine analogues to Golgi alpha-mannosidase II. Chembiochem, 11, 673–680.

    Article  CAS  Google Scholar 

  11. Kumar, N. S., Kuntz, D. A., Wen, X., Pinto, B. M., & Rose, D. R. (2008). Binding of sulfonium-ion analogues of di-epi-swainsonine and 8-epi-lentiginosine to Drosophila Golgi alpha-mannosidase II: the role of water in inhibitor binding. Proteins, 71, 1484–1496.

    Article  CAS  Google Scholar 

  12. Moremen, K. W. (1989). Isolation of a rat liver Golgi mannosidase II clone by mixed oligonucleotide-primed amplification of cDNA. Proceedings of the National Academy of Sciences of the United States of America, 86, 5276–5280.

    Article  CAS  Google Scholar 

  13. Moremen, K. W., & Robbins, P. W. (1991). Isolation, characterization, and expression of cDNAs encoding murine alpha-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. The Journal of Cell Biology, 115, 1521–1534.

    Article  CAS  Google Scholar 

  14. Misago, M., Liao, Y. F., Kudo, S., Eto, S., Mattei, M. G., Moremen, K. W., & Fukuda, M. N. (1995). Molecular cloning and expression of cDNAs encoding human alpha-mannosidase II and a previously unrecognized alpha-mannosidase IIx isozyme. Proceedings of the National Academy of Sciences of the United States of America, 92, 11766–11770.

    Article  CAS  Google Scholar 

  15. Strasser, R., Schoberer, J., Jin, C., Glossl, J., Mach, L., & Steinkellner, H. (2006). Molecular cloning and characterization of Arabidopsis thaliana Golgi alpha-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. The Plant Journal, 45, 789–803.

    Article  CAS  Google Scholar 

  16. Foster, J. M., Yudkin, B., Lockyer, A. E., & Roberts, D. B. (1995). Cloning and sequence analysis of GmII, a Drosophila melanogaster homologue of the cDNA encoding murine Golgi alpha-mannosidase II. Gene, 154, 183–186.

    Article  CAS  Google Scholar 

  17. Jarvis, D. L., Bohlmeyer, D. A., Liao, Y. F., Lomax, K. K., Merkle, R. K., Weinkauf, C., & Moremen, K. W. (1997). Isolation and characterization of a class II alpha-mannosidase cDNA from lepidopteran insect cells. Glycobiology, 7, 113–127.

    Article  CAS  Google Scholar 

  18. Paschinger, K., Hackl, M., Gutternigg, M., Kretschmer-Lubich, D., Stemmer, U., Jantsch, V., Lochnit, G., & Wilson, I. B. (2006). A deletion in the golgi alpha-mannosidase II gene of Caenorhabditis elegans results in unexpected non-wild-type N-glycan structures. The Journal of Biological Chemistry, 281, 28265–28277.

    Article  CAS  Google Scholar 

  19. Rabouille, C., Kuntz, D. A., Lockyer, A., Watson, R., Signorelli, T., Rose, D. R., van den Heuvel, M., & Roberts, D. B. (1999). The Drosophila GMII gene encodes a Golgi alpha-mannosidase II. Journal of Cell Science, 112(Pt 19), 3319–3330.

    CAS  Google Scholar 

  20. Qiu, X., Li, D., Cui, J., Liu, Y., & Wang, X. (2014). Molecular cloning, characterization and expression analysis of melanotransferrin from the sea cucumber Apostichopus japonicus. Molecular Biology Reports, 41, 3781–3791.

    Article  CAS  Google Scholar 

  21. Feng, X., Yu, X., Pang, M., Liu, H., & Tong, J. (2015). Molecular characterization and expression of three preprosomatostatin genes and their association with growth in common carp (Cyprinus carpio). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 182, 37–46.

    Article  CAS  Google Scholar 

  22. Fazel, R., Zarei, N., Ghaemi, N., Namvaran, M. M., Enayati, S., Mirabzadeh Ardakani, E., Azizi, M., & Khalaj, V. (2014). Cloning and expression of Aspergillus flavus urate oxidase in Pichia pastoris. Springerplus, 3, 395.

    Article  Google Scholar 

  23. Hossain, M. A., Nakano, R., Nakamura, K., Hossain, M. T., & Kimura, Y. (2010). Molecular characterization of plant acidic alpha-mannosidase, a member of glycosylhydrolase family 38, involved in the turnover of N-glycans during tomato fruit ripening. Journal of Biochemistry, 148, 603–616.

    Article  CAS  Google Scholar 

  24. Joshi, S., & Satyanarayana, T. (2014). Optimization of heterologous expression of the phytase (PPHY) of Pichia anomala in P. pastoris and its applicability in fractionating allergenic glycinin from soy protein. Journal of Industrial Microbiology & Biotechnology, 41, 977–987.

    Article  CAS  Google Scholar 

  25. Xiangya, K., Jiangye, Z., Ying, W., Jianfei, L., & Qinfan, L. (2014). Molecular characterization of Capra hircus lysosomal alpha-mannosidase and potential mutant site for the therapy of locoweed poisoning. Acta Biochimica Polonica, 61, 77–84.

    Google Scholar 

  26. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., & Schwede, T. (2009). The SWISS-MODEL repository and associated resources. Nucleic Acids Research, 37, D387–D392.

    Article  CAS  Google Scholar 

  27. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.

    CAS  Google Scholar 

  28. Altmann, F., & Marz, L. (1995). Processing of asparagine-linked oligosaccharides in insect cells: evidence for alpha-mannosidase II. Glycoconjugate Journal, 12, 150–155.

    Article  CAS  Google Scholar 

  29. Kaushal, G. P., Szumilo, T., Pastuszak, I., & Elbein, A. D. (1990). Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry, 29, 2168–2176.

    Article  CAS  Google Scholar 

  30. Ren, J., Castellino, F. J., & Bretthauer, R. K. (1997). Purification and properties of alpha-mannosidase II from Golgi-like membranes of baculovirus-infected Spodoptera frugiperda (IPLB-SF-21AE) cells. The Biochemical Journal, 324(Pt 3), 951–956.

    Article  CAS  Google Scholar 

  31. Shah, N., Kuntz, D. A., & Rose, D. R. (2008). Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proceedings of the National Academy of Sciences of the United States of America, 105, 9570–9575.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shaanxi Province Program for Science and Technology Research Development Plan (2014k01-17-02) of China and the central university basic scientific research operation cost special fund subsidizes (ZD2012009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinfan Li.

Electronic Supplemental Material

Below is the link to the electronic supplementary material.

ESM 1

Intracellular and extracellular expression of chGMII. Lanes M, protein standard; 16, intracellular expression of chGMII in different pH; 7 and 14, intracellular and extracellular expression of negative control; 813, extracellular expression products in different pH. (GIF 1.95 mb)

High resolution image file (TIF 486 kb)

ESM 2

Raw real-time PCR data of Fig. 1a (XLS 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, J., Lai, B. et al. Cloning, Expression, and Characterization of Capra hircus Golgi α-Mannosidase II. Appl Biochem Biotechnol 177, 1241–1251 (2015). https://doi.org/10.1007/s12010-015-1810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1810-0

Keywords

Navigation