Skip to main content
Log in

Molecular Cloning and Expression Analysis of a Catalase Gene (NnCAT) from Nelumbo nucifera

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rapid amplification cDNA end (RACE) assay was established to achieve the complete cDNA sequence of a catalase gene (NnCAT) from Nelumbo nucifera. The obtained full-length cDNA was 1666 bp in size and contained a 1476-bp open reading frame. The 3D structural model of NnCAT was constructed by homology modeling. The putative NnCAT possessed all the main characteristic amino acid residues and motifs of catalase (CAT) protein family, and the phylogenetic analysis revealed that NnCAT grouped together with high plants. Moreover, recombinant NnCAT showed the CAT activity (758 U/mg) at room temperature, holding high activity during temperature range of 20–50 °C, then the optimal pH of recombinant protein was assessed from pH 4 to pH 11. Additionally, real-time PCR assay demonstrated that NnCAT mRNA was expressed in various tissues of N. nucifera, with the highest expression in young leaf and lowest level in the root, and mRNA level of NnCAT was significantly augmented in response to short-time mechanical wounding. Different expression pattern of NnCAT gene suggested that NnCAT probably played a defensive role in the initial stages of oxidative stress, regulating the level of reactive oxygen species (ROS) by extracellular stimuli such as short-time mechanical wounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Underhill, D. M., & Ozinsky, A. (2002). Phagocytosis of microbes: complexity in action. Annual Review of Immunology, 20, 825–52.

    Article  CAS  Google Scholar 

  2. Lambeth, J. D. (2004). Nox enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4, 181–9.

    Article  CAS  Google Scholar 

  3. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal Botany, 2012, 26.

    Article  Google Scholar 

  4. Garcı’a, M. X., Foote, C., Van, S. E., Devreotes, P., Alexander, S., & Alexander, H. (2000). Differential development expression and cell type specificity of Dictyostelium catalases and their response to oxidative stress and UV-light. Biochimica et Biophysica Acta, 1492, 295–310.

    Article  Google Scholar 

  5. Switala, J., & Loewen, P. C. (2002). Diversity of properties among catalases. Archives of Biochemistry and Biophysics, 401, 145–154.

    Article  CAS  Google Scholar 

  6. Tavares-Sanchez, O. L., Gomez-Anduro, G. A., Felipe-Ortega, X., Islas-Osuna, M. A., Sotelo-Mundo, R. R., Barillas-Mury, C. B., & Yepiz-Plascencia, G. Y. (2004). Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection. Comparative Biochemistry Physiology. Part B, 138, 331–337.

    Article  Google Scholar 

  7. Zhang, Y., Fu, D. K., Yu, F., Liu, Q. Y., & Yu, Z. N. (2011). Two catalase homologs are involved in host protection against bacterial infection and oxidative stress in Crassostrea hongkongensis. Fish & Shellfish Immunology, 31, 894–903.

    Article  CAS  Google Scholar 

  8. Yang, X. L., Li, G., Wen, C. G., Hu, B. Q., Deng, L. R., Pei, P. Z., & Xie, Y. H. (2011). A catalase from the freshwater mussel Cristaria plicata with cloning, identification and protein characterization. Fish & Shellfish Immunology, 31, 389–99.

    Article  CAS  Google Scholar 

  9. Borkovic-Mitic, S. S., Kovacevic, T. B., Perendija, B. R., Despotovic, S. G., Gavric, J. P., Pavlovic, S. Z., & Saicic, Z. S. (2011). Superoxide-dismutase and catalase activities in the digestive gland of the freshwater bivalve Unio pictorum from the Sava River. Archives Biology Sciences, 63, 185–92.

    Article  Google Scholar 

  10. Khessiba, A., Romeo, M., & Aissa, P. (2005). Effects of some environmental parameters on catalase activity measured in the mussel (Mytilus galloprovincialis) exposed to lindane. Environmental Pollution, 133, 275–281.

    Article  CAS  Google Scholar 

  11. Zhang, Y., Song, J. M., Yuan, H. M., Xu, Y. Y., He, Z. P., & Duan, L. Q. (2010). Biomarker responses in the bivalve (Chlamys farreri) to exposure of the environmentally relevant concentrations of lead, mercury, copper. Environmental Toxicology and Pharmacology, 30, 19–25.

    Article  Google Scholar 

  12. Sinha, S., Mukherjee, P. K., Mukherjee, K., Pal, M., Mandal, S. C., & Saha, B. P. (2000). Evaluation of antipyretic potential of Nelumbo nucifera stalk extract. Phytotherapy Research, 14, 272–274.

    Article  CAS  Google Scholar 

  13. Dong, C., Li, G. L., Li, Z. Q., Zhu, H. L., Zhou, M. Q., & Hu, Z. L. (2009). Molecular cloning and expression analysis of an Mn-SOD gene from Nelumbo nucifera. Applied Biochemistry and Biotechnology, 158, 605–614.

    Article  CAS  Google Scholar 

  14. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular and Biological Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  15. Hara, I., Ichise, N., Kojima, K., Kondo, H., Ohgiya, S., Matsuyama, H., & Yumoto, I. (2007). Relationship between the size of the bottleneck 15 A from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates. Biochemistry, 9, 11–22.

    Article  Google Scholar 

  16. Sanchez, R., & Sali, A. (1997). Evaluation of comparative protein structure modeling by MODELLER-3. Proteins (Suppl)., 1, 50–58.

    Article  Google Scholar 

  17. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Procheck: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  18. Dong, C., Zheng, X. F., Li, G. L., Zhu, H. L., Zhou, M. Q., & Hu, Z. L. (2011). Molecular cloning and expression of two cytosolic copper-zinc superoxide dismutases genes from Nelumbo nucifera. Applied Biochemistry and Biotechnology, 163(5), 679–691.

    Article  CAS  Google Scholar 

  19. Mizuno, K., Fukuda, D., Kakihara, M., Kohno, M., Ha, T. L., Sonomoto, K., & Ishizaki, A. (2000). Purification and gene cloning of catalase from Staphylococcus warneri ISK-1. Food Science and Technology Research, 6(4), 324–329.

    Article  CAS  Google Scholar 

  20. Dong, C., Zheng, X. F., Li, G. L., Pan, C., Zhou, M. Q., & Hu, Z. L. (2011). Cloning and expression of one chloroplastic ascorbate peroxidase gene from Nelumbo nucifera. Biochemistry Genetics, 49(9), 656–664.

    Article  CAS  Google Scholar 

  21. Babic, M., Radic, S., Cvjetko, P., Roje, V., Pevalek-Kozlina, B., & Pavlica, M. (2009). Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquatic Botany, 91, 166–172.

    Article  CAS  Google Scholar 

  22. Moreira, S. F. I., Bailao, A. M., Barbosa, M. S., Jesuino, R. S. A., Felipe, M. S. S., Pereira, M., & de Almeida Soares, C. M. (2004). Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis. Yeast, 21, 173–82.

    Article  CAS  Google Scholar 

  23. Putnam, C. D., Arvai, A. S., Bourne, Y., & Tainer, J. A. (2000). Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology, 296, 295–309.

    Article  CAS  Google Scholar 

  24. Murthy, M. R., Reid, T. J., 3rd, Sicignano, A., Tanaka, N., & Rossmann, M. G. (1981). Structure of beef liver catalase. Journal of Molecular Biology, 152, 465–499.

    Article  CAS  Google Scholar 

  25. Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy Sciences of the United States of America, 96, 6553–6557.

    Article  CAS  Google Scholar 

  26. Abele-Oeschge, D., Sartoris, F. J., & Portner, H. O. (1997). Hydrogen peroxide causes a decrease in aerobic metabolic rate and in intracellular pH in the shrimp Crangon crangon. Comparative Biochemistry and Physiology - Part C, 117, 123–129.

    Google Scholar 

Download references

Acknowledgments

The authors are greatly appreciative of the reviewers for their helpful comments and detailed suggestions. This work is financially supported by the National Science and Technology Supporting Program (no. 2012BAD27B01), Doctoral Scientific Research Start-up Foundation from Henan University of Technology (no. 31400855), and Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (no. 2015QNJH07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongli Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Zheng, X., Diao, Y. et al. Molecular Cloning and Expression Analysis of a Catalase Gene (NnCAT) from Nelumbo nucifera . Appl Biochem Biotechnol 177, 1216–1228 (2015). https://doi.org/10.1007/s12010-015-1808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1808-7

Keywords

Navigation