Skip to main content
Log in

Lactic Acid and Biosurfactants Production from Residual Cellulose Films

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6 % (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49 % of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50 % of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poggi, S. T., & Hidazi, G. R. (2002). Method for viscose production. US Patent, 6392033, B1.

    Google Scholar 

  2. Sreenath, H. K., & Jeffries, T. W. (2011). Interactions of fungi from fermented sausage with regenerated cellulose casings. Journal of Industrial Microbiology and Biotechnology, 38, 1793–1802.

    Article  CAS  Google Scholar 

  3. Sreenath, H. K., & Koegel, R. G. (2008). Bioconversion of spent cellulose sausage casings. Enzyme and Microbial Technology, 43, 226–232.

    Article  CAS  Google Scholar 

  4. Sanders, D. A., Belyea, R. L., & Taylor, T. A. (2000). Degradation of spent casings with commercial cellulases. Bioresource Technology, 71, 125–131.

    Article  CAS  Google Scholar 

  5. Gentry, J. L., Hussein, H. S., Berger, L. L., & Fahey Jr., G. C. (1996). Spent cellulose casings as potential feed ingredients for ruminants. Journal of Animal Science, 74, 663–671.

    CAS  Google Scholar 

  6. Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits. Applied Microbiology and Biotechnology, 85, 413–423.

    Article  CAS  Google Scholar 

  7. Abdel – Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Advances, 31, 877–902.

  8. Abdel – Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286–301.

  9. Laopaiboon, P., Thani, A., Leelavatcharamas, V., & Laopaiboon. L. (2010). Acid hydrolysis of sugar cane bagasse for lactic acid production. Bioresource Technology, 101, 1036–1043.

  10. Pacwa-Plociniczak, M., Plaza, G. A., Potrowska – Saget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Science, 12, 633–654.

  11. Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters of Applied Microbiology, 50, 419–424.

    Article  Google Scholar 

  12. Madhu, A. N., & Prapulla, S. G. (2014). Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Applied Biochemistry and Biotechnology, 172, 1777–1789.

    Article  CAS  Google Scholar 

  13. Campos, J. M., Montenegro Stamford, T. L., Sarubbo, L. A., de Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29, 1097–1108.

    Article  CAS  Google Scholar 

  14. Rodrigues, L., Moldes, A., Teixeira, J., & Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 28, 109–116.

    Article  CAS  Google Scholar 

  15. Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 1, 1–19.

  16. Vially, G., Marchal, R., & Guilbert, N. (2010). L(+) lactate production from carbohydrates and lignocellulosic materials by Rhizopus oryzae UMIP 4.77. World Journal of Microbiology and Biotechnology, 26, 607–614.

    Article  CAS  Google Scholar 

  17. Bustos, G., de la Torre, N., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2007). Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L. pentosus. Journal of Food Engineering, 78, 405–412.

    Article  CAS  Google Scholar 

  18. Portilla-Rivera, O. M., Moldes, A. B., Torrado, A. M., & Domínguez, J. M. (2007). Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochemistry, 42, 1010–1020.

    Article  Google Scholar 

  19. Moldes, A. B., Torrado, A., Barral, M. T., & Domínguez, J. M. (2007). Evaluation of biosurfactant production from various agricultural residues by L. pentosus. Journal of Agricultural and Food Chemistry, 55, 4481–4486.

    Article  CAS  Google Scholar 

  20. Portilla-Rivera, O. M., Torrado, A., Carballo, J., Domínguez, J. M., & Moldes, A. B. (2009). Development of a factorial design to study the effect of the major hemicellulosic sugars on the production of surface-active compounds by L. pentosus. Journal of Agricultural and Food Chemistry, 57, 9057–9062.

    Article  CAS  Google Scholar 

  21. Rodríguez, N., Torrado, A., Cortés, S., & Domínguez, J. M. (2010). Use of waste materials for Lactococcus lactis development. Journal of Science and Food Agriculture, 90, 1726–1734.

    Article  Google Scholar 

  22. Rodríguez, N., Salgado, J. M., Cortés, S., & Domínguez, J. M. (2013). Biotechnological production of phenyllactic acid and biosurfactants from trimming wine shoots hydrolyzates by microbial coculture fermentation. Applied Biochemistry and Biotechnology, 169, 2175–2188.

    Article  Google Scholar 

  23. John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524–534.

    Article  CAS  Google Scholar 

  24. Viikari, H. L., Mustranta, E. A., Ojamo, L. O., Itävaara, K. M., & Johansson, T. T. (1998). Method of dissolution of sausage skins and other cellulosic substances by means of an enzyme solution. US Patent, 5814515.

  25. Bustos, G., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2004). Evaluation of vinification lees as a general medium for Lactobacillus strains. Journal of Agricultural and Food Chemistry, 52, 5233–5239.

    Article  CAS  Google Scholar 

  26. Kim, S., Lim, E., Lee, S., Lee, J., & Lee, T. (2000). Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnology and Applied Biochemistry, 31, 249–253.

    Article  Google Scholar 

  27. Gurgel, L. V. A., Marabezi, K., Zanbom, M. D., & Curvelo, A. A. D. S. (2012). Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Industrial and Engineering Chemistry Research, 51, 1173–1185.

  28. Dussán, K. J., Silva, D. D. V., Moraes, E. J. C., Arruda, P. V., & Felipe, M. G. A. (2014). Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chemical Engineering Transactions, 38, 433–438.

    Google Scholar 

  29. Ruel, K., Nishiyama, Y., & Joseleau, J. (2012). Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Science, 193-194, 48–61.

    Article  CAS  Google Scholar 

  30. Sun, Q., Foston, M., Meng, X., Sawada, D., Pingali, S. V., O’Neill, H. M., Li, H., Wyman, C. E., Langun, P., Ragauskas, A. J., & Kumar, R. R. (2014). Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnology for Biofuels, 150, 1–14.

    Google Scholar 

  31. Moldes, A. B., Alonso, J. L., & Parajó, J. C. (2001). Resin selection and single-step production and recovery of lactic acid from pretreated wood. Applied Biochemistry and Biotechnolgoy, 95, 69–81.

    Article  CAS  Google Scholar 

  32. Van der Vegt, W., Van der Mei, H. C., Noordmans, J., & Busscher, H. J. (1991). Assessment of bacterial biosurfactant production through axisymmetric drop shape analysis by profile. Applied Microbiology and Biotechnology, 35, 766–770.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Programa de Mejoramiento del Profesorado (PROMEP) for the financial support of this work by the grant PROMEP/103.5/11/6945.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar Manuel Portilla Rivera or José Manuel Domínguez González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portilla Rivera, O.M., Arzate Martínez, G., Jarquín Enríquez, L. et al. Lactic Acid and Biosurfactants Production from Residual Cellulose Films. Appl Biochem Biotechnol 177, 1099–1114 (2015). https://doi.org/10.1007/s12010-015-1799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1799-4

Keywords

Navigation