Skip to main content

Advertisement

Log in

Advanced Glycation-Modified Human Serum Albumin Evokes Alterations in Membrane and Eryptosis in Erythrocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Increased burden of advanced glycation end-products (AGEs) in case of hyperglycemic conditions leads to the development of retinopathy, nephropathy, and cardiovascular and neurological disorders such as Alzheimer’s disease. AGEs are considered as pro-oxidants, and their accumulation increases the oxidative stress. The prolonged exposure to these AGEs is the fundamental cause of chronic oxidative stress. Abnormal morphology of red blood cells (RBCs) and excessive eryptosis has been observed in diabetes, glomerulonephritis, dyslipidemia, and obesity, but yet the contribution of extracellular AGEs remains undefined. In this study, we investigated the effect of AGEs on erythrocytes to determine their impact on the occurrence of different pathological forms of these blood cells. Specifically, carboxymethyllysine (CML), carboxyethyllysine (CEL), and Arg-pyrimidine (Arg-P) which have been reported to be the most pre-dominant AGEs formed under in vivo conditions were used in this study. Results suggested the eryptotic properties of CML, CEL, and Arg-P for RBCs, which were evident from the highly damaged cell membrane and occurrence of abnormal morphologies. Methylglyoxal-modified albumin showed more severe effects, which can be attributed to the high reactivity and pro-oxidant nature of glycation end products. These findings suggest the possible role of AGE-modified albumin towards the morphological changes in erythrocyte’s membrane associated with diabetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

RBCs:

Red blood cells

HSA:

Human serum albumin

CML:

Carboxymethyllysine

CEL:

Carboxyethyllysine

Arg-P:

Arg-pyrimidine

TNBSA:

2,4,6-Trinitrobenzenesulfonic acid

PNQ:

9,10-phenanthrenequinone

GA:

Glyoxylic acid

PA:

Pyruvic acid

MG:

Methylglyoxal

FE-SEM:

Field emission-scanning electron microscopy

References

  1. Vlassara, H., & Uribarri, J. (2014). Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diabetes Rep, 14, 453.

    Article  Google Scholar 

  2. Bodiga, V. L., Eda, S. R., & Bodiga, S. (2014). Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Failure Reviews, 19, 49–63.

    Article  CAS  Google Scholar 

  3. Bucala, R. (2014). Diabetes, aging, and their tissue complications. The Journal of Clinical Investigation, 124, 1887–1888.

    Article  CAS  Google Scholar 

  4. Vlassara, H., & Striker, G. E. (2013). Advanced glycation endproducts in diabetes and diabetic complications. Endocrinology and Metabolism Clinics of North America, 42, 697–719.

    Article  Google Scholar 

  5. Willett, T. L., Kandel, R., De Cross, J. N., Avery, N. C., & Grynpas, M. D. (2012). Enhanced levels of non-enzymatic glycation and pentosidine cross-linking in spontaneous osteoarthritis progression. Osteoarthritis and Cartilage, 20, 736–744.

    Article  CAS  Google Scholar 

  6. Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21(1), 3–12.

    Article  CAS  Google Scholar 

  7. Frye, E. B., Degenhardt, T. P., Thorpe, S. R., & Baynes, J. W. (1998). Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. The Journal of Biological Chemistry, 273(30), 18714–18719.

    Article  CAS  Google Scholar 

  8. Hohn, A., Jung, T., & Grune, T. (2014). Pathophysiological importance of aggregated damaged proteins. Free Radical Biology & Medicine, 71, 70–89.

    Article  Google Scholar 

  9. Guerreo, E., Vasudevaraju, P., Hegde, M. L., Britton, G. B., & Rao, K. S. (2013). Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson's disease. Molecular Neurobiology, 47(2), 525–536.

    Article  Google Scholar 

  10. Moreau, K. L., & King, J. A. (2012). Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in Molecular Medicine, 18(5), 273–282.

    Article  CAS  Google Scholar 

  11. Nowotny, K., Jung, T., & Hohn, A. (2014). Accumulation of modified proteins and aggregate formation in aging. Experimental Gerontology, 57, 122–131.

    Article  CAS  Google Scholar 

  12. Ikeda, K., Higashi, T., Sano, H., Jinnouchi, Y., Yoshida, M., Araki, T., & Horiuchi, S. (1996). N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry, 35, 8075–8083.

    Article  CAS  Google Scholar 

  13. Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R., & Baynes, J. W. (1995). N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry, 34, 10872–10878.

    Article  CAS  Google Scholar 

  14. Rabbani, N., & Thornalley, P. J. (2014). The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes, 63, 50–52.

    Article  CAS  Google Scholar 

  15. Turkseven, S., Ertuna, E., Yetik-Anacak, G., & Yasa, M. (2013). Methylglyoxal causes endothelial dysfunction: the role of endothelial nitric oxide synthase and AMP-activated protein kinase alpha. Journal of Basic and Clinical Physiology and Pharmacology, 14, 1–7.

    Google Scholar 

  16. Vlassopoulos, A., Lean, M. E., & Combet, E. (2013). Role of oxidative stress in physiological albumin glycation: a neglected interaction. Free Radical Biology & Medicine, 60, 318–324.

    Article  CAS  Google Scholar 

  17. Reddy, V. P., Zhu, X., Perry, G., & Smith, M. A. (2009). Oxidative stress in diabetes and Alzheimer’s disease. Journal of Alzheimer’s disease, 16(4), 763–774.

    CAS  Google Scholar 

  18. Li, H., Horke, S., & Forstermann, U. (2013). Oxidative stress in vascular disease and its pharmacological prevention. Trends in Pharmacological Sciences, 34(6), 313–319.

    Article  Google Scholar 

  19. Schaffer, S. W., Jong, C. J., & Mozaffari, M. (2012). Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascular Pharmacology, 57(5–6), 139–149.

    Article  CAS  Google Scholar 

  20. Huebschmann, A. G., Regensteiner, J. G., Vlassara, H., & Reusch, J. E. (2006). Diabetes and advanced glycoxidation end products. Diabetes Care, 29(6), 1420–1432.

    Article  CAS  Google Scholar 

  21. Cohen, M. P., & Ziyadeh, F. N. (1996). Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy. Journal of the American Society of Nephrology, 7, 183–190.

    CAS  Google Scholar 

  22. Kim, M. R., Yu, S. A., Kim, M. Y., Choi, K., & Kim, C. W. (2014). Analysis of glycated serum proteins in type 2 diabetes patients with nephropathy. Biotechnolo Bioprocs Eng, 19, 83–92.

    Article  CAS  Google Scholar 

  23. Stirban, A., Gawlowski, T., & Roden, M. (2014). Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab, 3, 94–108.

    Article  CAS  Google Scholar 

  24. Kamruzzahan, A. S., Kienberger, F., Stroh, C. M., Berg, J., Huss, R., Ebner, A., & Hinterdorfer, P. (2004). Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM. Biological Chemistry, 385, 955–960.

    Article  CAS  Google Scholar 

  25. Umudum, F., Yucel, O., Sahin, Y., & Bakan, E. (2002). Erythrocyte membrane glycation and NA(+)-K(+) levels in NIDDM. J Diabetes Complication, 16, 359–362.

    Article  Google Scholar 

  26. Pretorius, E. (2013). The adaptability of red blood cells. Cardiovascular Diabetology, 12, 1475–2840.

    Article  Google Scholar 

  27. Ahmed, N., Argirov, O. K., Minhas, H. S., Cordeiro, C. A., & Thornalley, P. J. (2002). Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin. The Biochemical Journal, 364, 1–14.

    Article  CAS  Google Scholar 

  28. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  29. Cayot, P., & Tainturier, G. (1997). The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination. Analytical Biochemistry, 249, 184–200.

    Article  CAS  Google Scholar 

  30. Smith, R. E., & MacQuarrie, (1978). A sensitive fluorometric method for the determination of arginine using 9,10-phenanthrenequinone. Analytical Biochemistry, 90, 246–255.

  31. Manacelli, F., Storace, D., D’Arrigo, C., Sanguineti, R., Pacini, D., Furfaro, A. L., Pronzato, M. A., Odetti, P., & Traverso, N. (2013). Structural alterations of humans serum albumin caused by glycation and oxidative stressors revealed by circular dichroism analysis. International Journal of Molecular Sciences, 14(6), 10694–10709.

    Article  Google Scholar 

  32. Kim, J., Kim, O. S., Kim, C. S., Sohn, E., Jo, K., & Kim, J. S. (2012). Accumulation of argpyrimidine, a methylglyoxal-derived advanced glycation end product, increases apoptosis of lens epithelial cells both in vitro and in vivo. Experimental & Molecular Medicine, 44, 167–175.

    Article  Google Scholar 

  33. Gomes, R., Sousa Silva, M. S., Quintas, A., Cordeiro, C., Freire, A., Pereira, P., Martins, A., Monteiro, E., Barroso, E., & Freire, P. A. (2005). Argpyrimidine, a methylglyoxal-derived advanced glycation end-product in familial amyloidotic polyneuropathy. The Biochemical Journal, 15, 339–345.

    Article  Google Scholar 

  34. Heine, G. H., Sester, U., Girndt, M., & Kohler, H. (2004). Acanthocytes in the urine: useful tool to differentiate diabetic nephropathy from glomerulonephritis? Diabetes Care, 27, 190–194.

    Article  Google Scholar 

  35. Babu, N., & Singh, M. (2004). Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clinical Hemorheology and Microcirculation, 31, 273–280.

    CAS  Google Scholar 

  36. Ciccoli, L., De Felice, C., Paccagnini, E., Leoncini, S., Pecorelli, A., Signorini, C., & Hayek, J. (2012). Morphological changes and oxidative damage in Rett syndrome erythrocytes. Biochimica et Biophysica Acta, 4, 511–520.

    Article  Google Scholar 

  37. Malorni, W., Straface, E., Pagano, G., Monti, D., Zatterale, A., Del Principe, D., & Korkina, L. G. (2000). Cytoskeleton alterations of erythrocytes from patients with Fanconi’s anemia. FEBS Letters, 468, 125–128.

    Article  CAS  Google Scholar 

  38. Somjee, S. S., Warrier, R. P., Thomson, J. L., Ory-Ascani, J., & Hempe, J. M. (2005). Advanced glycation end-products in sickle cell anaemia. British Journal of Haematology, 128, 112–118.

    Article  CAS  Google Scholar 

  39. Mohanty, J. G., Shukla, H. D., Williamson, J. D., Launer, L. J., Saxena, S., & Rifkind, J. M. (2010). Alterations in the red blood cell membrane proteome in Alzheimer's subjects reflect disease-related changes and provide insight into altered cell morphology. Proteome Science, 8, 11.

    Article  Google Scholar 

  40. Bourdon, E., Loreau, N., & Blache, D. (1999). Glucose and free radicals impairs the antioxidant properties of serum albumin. The FASEB Journal, 13(2), 233–244.

    CAS  Google Scholar 

  41. Lieuw-A-Fa, M. L. M., van Hinsbergh, V. W. M., Teerlink, T., Barto, R., Twisk, R., Stehouwer, C. D. A., & Casper, G. S. (2004). Increased levels of Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrology, Dialysis, Transplantation, 19, 631–636.

    Article  CAS  Google Scholar 

  42. Pisani, A., Diomedi, M., Cianciulli, P., Floris, R., Orlacchio, A., Bernardi, G., & Calabresi, P. (2005). Acanthocytes as a predisposing factor for non-ketotic hyperglycaemia induced chorea-ballism. Journal of Neurology, Neurosurgery, and Psychiatry, 76(12), 1717–1719.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank SASTRA University for providing the financial support (TRR Fund) and infrastructure for carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Saraswathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, S., Gayathiri, S.K., Ramya, R. et al. Advanced Glycation-Modified Human Serum Albumin Evokes Alterations in Membrane and Eryptosis in Erythrocytes. Appl Biochem Biotechnol 177, 1013–1024 (2015). https://doi.org/10.1007/s12010-015-1793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1793-x

Keywords

Navigation