Skip to main content
Log in

The Chemical Diversity of the Ascomycete Fungus Paecilomyces variotii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Paecilomyces variotii isolated from a broad range of habitats drives the diversification of new high-value-added secondary metabolites that could potentially play an important role in human and animal health. These metabolites include the anhydride metabolite of the nonadride family, as well as the following compounds: naphthopyranone metabolites, sphingofungins, eicosenoic acids, new branched fatty acids, ascofuranone, polyketides, an anacardic acid analogue, straight-chain peptides, and volatile compounds. These natural products show that P. variotii can provide leading compounds for new drug discoveries, which may include herbicide agents, some of which are important in the agrochemical market. Finally, this review outlines recent developments, trends, and prospects for the chemistry of this ascomycete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Samson, R. A., Houbraken, J., Varga, J., & Frisvad, J. C. (2009). Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia, 22, 14–27.

    Article  CAS  Google Scholar 

  2. Houbraken, J., Samson, R. A., & Frisvad, J. C. (2006). Byssochlamys: significance of heat resistance and mycotoxin production. Advances in Experimental Medicine and Biology, 571, 211–224.

    Article  CAS  Google Scholar 

  3. Udagawa, S., & Suzuki, S. (1994). Talaromyces spectabilis, a new species of food-borne Ascomycetes. Mycotaxon, 50, 81–88.

    Google Scholar 

  4. Samson, R. A. (1974). Paecilomyces and some allied hyphomycetes. Studies in Mycology, 6, 1–119.

    Google Scholar 

  5. Pitt, J. I., Samson, R. A., & Frisvad, J. C. (2000). Integration of modern taxonomic methods for Penicillium and Aspergillus classification. (Samson, R. A. and Pitt, J. I., eds.), Plenum Press, NY, pp. 9–49.

  6. Samson, R. A., Houbraken, J., Summerbell, R. C., Flannigan, B., & Miller, J. D. (2001). Common and important species of fungi and actinomycetes in indoor environment. In B. Flannigan, R. A. Samson, & J. Miller (Eds.), Microorganisms in home and indoor work environments (pp. 287–474). Boca Raton: CRC Press LLC.

    Google Scholar 

  7. Oliveira Silva, M. R., Kawai, K., Hosoe, T., Campos Takaki, G. M., Buarque Gusmão, N., & Fukushima, K. (2013). Viriditoxin, an antibacterial substance produced by mangrove endophytic fungus Paecilomyces variotii. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: science, technology and education (pp. 1406–1411). Badajoz: Formatex Res. Pub.

    Google Scholar 

  8. Toledo Marante, F. J., Mioso, R., Bermejo Barrera, J., González González, J. E., Santana Rodríguez, J. J., Bravo, H., & de Laguna, I. (2012). Structural characterization and metabolite profiling of the facultative marine fungus Paecilomyces variotii. Annals of Microbiology, 62, 1601–1607.

    Article  CAS  Google Scholar 

  9. Steiner, B., Aquino, V. R., Paz, A. A., da Rocha Silla, L. M., Zavascki, A., & Goldani, L. Z. (2013). Case Reports in Infectious Diseases, 2013, 848.

    Article  Google Scholar 

  10. Houbraken, J., Varga, J., Rico-Munoz, E., Johnson, S., & Samson, R. A. (2008). Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (anamorph Paecilomyces variotii). Applied and Environmental Microbiology, 74, 1613–1619.

    Article  CAS  Google Scholar 

  11. Piecková, E., & Samson, R. A. (2000). Heat resistance of Paecilomyces variotii in sauce and juice. Journal of Industrial Microbiology and Biotechnology, 24, 227–230.

    Article  Google Scholar 

  12. Frandsen, R. J. N., Andersson, J. A., Kristensen, M. B., & Giese, H. (2008). Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Molecular Biology, 9, 1–11.

    Article  Google Scholar 

  13. Bills, G. F., Gloer, J. B., & An, Z. (2013). Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Current Opinion in Microbiology, 16, 549–565.

    Article  CAS  Google Scholar 

  14. Inderjit, & Irwin Keating, K. (1999). Allelopathy: principles, procedures, processes, and promises for biological control. Advances in Agronomy, 67, 141–123.

  15. Vyvyan, J. R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 58, 1631–1646.

    Article  CAS  Google Scholar 

  16. Wang, C., Zhu, M., Chen, X., & Qu, B. (2011). Review on allelopathy of exotic invasive plants. Procedia Engineering, 18, 240–246.

    Article  CAS  Google Scholar 

  17. Nigam, P. S., & Singh, A. (2014). Metabolic pathways: production of secondary metabolites —fungi. In C. A. Batt, & M. L. Tortorello (Eds.), Encyclopedia of Food Microbiology, vol. 2 (pp. 570–578). London: Elsevier Ltd., Academic Press.

    Chapter  Google Scholar 

  18. Keller, N. P., Turner, G., & Bennett, J. W. (2005). Nature Reviews Microbiology, 3, 937–947.

    Article  CAS  Google Scholar 

  19. Balde, E. S., Andolfi, A., Bruyère, C., Cimmino, A., Lamoral-Theys, D., Vurro, M., Damme, M. V., Altomare, C., Mathieu, V., Kiss, R., & Evidente, A. (2010). Journal of Natural Products, 73, 969–971.

    Article  CAS  Google Scholar 

  20. Takahashi, S., Nakajima, M., & Kinoshita, T. (1994). Natural and Engineered Pest Management Agents, 551, 74–84.

    Article  CAS  Google Scholar 

  21. Amagasa, T., Paul, R. N., Heitholt, J. J., & Duke, S. O. (1994). Physiological effects of cornexistin on Lemna pausicostata. Pesticide Biochemistry and Physiology, 49, 37–52.

    Article  CAS  Google Scholar 

  22. Takeshiba, H., Hizuba, J., Sano, H., Ozasa, M., & Nakajima, M. (1990). Preparation of cornexistin derivatives as herbicides, plant growth regulators, and germination inhibitors. Japan Patent, 02209844209847.

  23. Haneishi, T., Nakajima, M., Koi, K., Furuya, K., Iwado, S., & Sato, S. (1988). Manufacture of cornexistin herbicide with Paecilomyces. European Patent, 290193118.

  24. Nakajima, M., Itoi, K., Takamatsu, Y., Sato, S., Furukawa, Y., Furuya, K., Honma, T., Kadotani, J., Kozasa, M., & Haneishi, T. (1991). Cornexistin: a new fungal metabolite with herbicidal activity. Journal of Antibiotics, 44, 1065–1072.

    Article  CAS  Google Scholar 

  25. Tung, J. C., & Taylor, R. E. (2014). Towards a total synthesis of the cornexistins: taking advantage of a reversible aldol. Available from: oasys2.confex.com/acs/229nm/techprogram/P822186.HTM. Accessed August 17, 2014.

  26. Sekutowski, T. (2010). Alleloherbicides and bioherbicides—myth or reality? Journal of Research and Applications in Agricultural Engineering, 55, 84–90.

    Google Scholar 

  27. Fields, S. C., Gerwick, B. C., & Mireles-Lo, L. (1995). Hydroxycornexistin herbicide. US Patent, 5424278424, 7 p.

  28. Zelder, O., Hoff, B., Schröder, H., Molt, A., Hartmann, H., Ditrich, K., Breuer, M., Reingruber, R., & Weber, J. (2014). Gene cluster for biosynthesis of cornexistin and hydroxycornexistin. US Patent, 20140141440 A1, 106 p.

  29. Lazarus, C. M., Williams, K., & Bailey, A. M. (2014). Reconstructing fungal natural product biosynthetic pathways. Natural Product Reports, 31, 1339–1347.

    Article  CAS  Google Scholar 

  30. Aldridge, D. C., Carman, R. M., & Moore, R. B. (1980). A new tricarboxylic acid anhydride from Paecilomyces variotii. Journal of the Chemical Society, Perkin Transactions, 1, 2134–2135.

    Article  Google Scholar 

  31. Ayer, W. A., Craw, P. A., & Nozawa, K. (1991). Two 1H-naphtho [2, 3-c] pyran-1-one metabolites from the fungus Paecilomyces variotii. Canadian Journal of Chemistry, 69, 189–191.

    Article  CAS  Google Scholar 

  32. Tan, N. P. H., & Donner, C. D. (2009). Total synthesis and confirmation of the absolute stereochemistry of semiviriditoxin, a naphthopyranone metabolite from the fungus Paecilomyces variotii. Tetrahedron, 65, 4007–4012.

    Article  CAS  Google Scholar 

  33. Hyung, J. J., Kang, H., Joong, J. J., & Soo, K. Y. (2013). Paecilomyces variotii extracts for preventing and treating infections caused by fish pathogenic microorganisms. KR Patent, 2013051523.

  34. Lillehoj, E. B., & Ciegler, A. (1972). A toxic substance from Aspergillus viridinutans. Canadian Journal of Microbiology, 18, 193–197.

    Article  CAS  Google Scholar 

  35. Mioso, R., Toledo Marante, F. J., Bravo de Laguna, I. H., & Bessonart, M. (2014). Química de productos naturales y acuicultura: un enfoque interdisciplinar. Química Nova, 37, 513–520.

    CAS  Google Scholar 

  36. Horn, W. S., Smith, J. L., Bills, G. F., Raghoobar, S. L., Helms, G. L., Kurtz, M. B., Marrinan, J. A., Frommer, B. R., Thornton, R. A., & Mandala, S. M. (1992). Sphingofungins E & F: novel serine palmitoil transferase inhibitors from Paecilomyces variotii. Journal of Antibiotics, 45, 1692–1696.

    Article  CAS  Google Scholar 

  37. Martinková, M., Gonda, J., Raschmanová, J. S., Slaninková, M., & Kuchár, J. (2010). Total synthesis of a protected form of sphingofungin E using the [3,3]-sigmatropic rearrangement of an allylic thiocyanate as the key reaction. Carbohydrate Research, 345, 2427–2437.

    Article  Google Scholar 

  38. Horn, W. S., Kurtz, M. B., Liesch, J. M., Smith, J. L., Martin, I., & Vicente, F. (1993). Antibiotic eicosenoic acids and their manufacture with Paecilomyces variotii. US Patent, 5233062233066.

  39. Leal, J. A. (1994). Water-soluble polysaccharides of fungal cell walls. In R. A. Prins, & C. S. Stewart (Eds.), Microorganisms in ruminant nutrition (pp. 153–165). Nottingham: University Press.

    Google Scholar 

  40. Domenech, J., Prieto, A., Bernabe, M., & Leal, J. A. (1994). Cell wall polysaccharides of four strains of Paecilomyces variotii. Current Microbiology, 28, 169–173.

    Article  CAS  Google Scholar 

  41. Sunesson, A., Vaes, W., Nilsson, C., Blomquist, G., Andersson, B., & Carlson, R. (1995). Identification of volatile metabolites from five fungal species cultivated on two media. Applied and Environmental Microbiology, 61, 2911–2918.

    CAS  Google Scholar 

  42. Dechkan-Khodzhaeva, N. A., Ivanov, V. I., Nurtaev, K. S., Gazikhodzhaeva, M. A., Sinyashin, N. I., & Mirtalipov, D. T. (1997). Phospholipid and fatty acid compositions of two forms of the fungus Paecilomyces variotii Bainier var. Zaaminella (Dechkan, 1974). Doklady Akademii Nauk Respubliki Uzbekistan, 12, 40–43.

    Google Scholar 

  43. Babitskaya, V. G., & Shcherba, V. V. (2002). The nature of melanin pigments of several micro- and macromycetes. Applied Biochemistry and Microbiology, 38, 247–251.

    Article  CAS  Google Scholar 

  44. Sasaki, H., Okutomi, T., Hosokawa, T., Nawata, Y., & Ando, K. (1972). Ascofuranone, a new antibiotic from Ascochyta viciae. Tetrahedron Letters, 13, 2541–2544.

    Article  Google Scholar 

  45. Terekhova, L. P., Trenin, A. S., Ozerskaya, S. M., Rudenskaya, Y. A., Maksimova, T. S., Katrukha, G. S., Tolstykh, I. V., Zenkova, V. A., Fedorova, G. B., Potapova, N. P., & Kosykh, V. A. (1997). Biosynthesis of ascofuranone by the fungus Paecilomyces variotii Bainier. Microbiology, 66, 510–514.

    CAS  Google Scholar 

  46. Liu, J., Li, F., Kim, E. L., Li, J. L., Hong, J., Bae, K. S., Chung, H. Y., Kim, H. S., & Jung, J. H. (2011). Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii. Journal of Natural Products, 74, 1826–1829.

    Article  CAS  Google Scholar 

  47. Liu, J., Li, F., Lee, Y. -M., Li, J. L., Hong, J.-K., Yoon, W. -D., Kim, E. -K., & Jung, J. -H. (2012). An anacardic acid analog from the jellyfish-derived fungus Paecilomyces variotii. Natural Product Sciences, 18, 8–12.

    Google Scholar 

  48. Hegde, V. R., Silver, J., Patel, M., Gullo, V. P., Puar, M. S., Das, P. R., & Loebenberg, D. (2003). Novel fungal metabolites as cell wall active antifungals: fermentation, isolation, physico-chemical properties, structure and biological activity. Journal of Antibiotics, 56, 437–447.

    Article  CAS  Google Scholar 

  49. Toledo Marante, F. J., Mioso, R., Bravo de Laguna, I. H., & Barrera, J. B. (2011). Industrial production of cytotoxics: single cell ergosterol peroxide obtained from the facultative marine fungus Paecilomyces variotii. 7th Meeting of Young Cancer Investigators of the Canaries/4th Meeting of Young Biomedical Investigators of the Macaronesia (p. 122). Spain: Tenerife.

  50. Takei, T., Yoshida, M., Ohnishi-Kameyama, M., & Kobori, M. (2005). Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Bioscience, Biotechnology, and Biochemistry, 69, 212–215.

    Article  CAS  Google Scholar 

  51. Kobori, M., Yoshida, M., Ohnishi-Kameyama, M., & Shinmoto, H. (2007). Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. British Journal of Pharmacology, 150, 209–219.

    Article  CAS  Google Scholar 

  52. Zheng, L., Si, J., & Wong, Y. S. (2009). Ergosterol peroxide and 9,11-dehydroergosterol peroxide from Ganoderma lucidum mycelia suppress the growth of human breast adenocarcinoma MCF-7 cells. International Journal of Medicinal Mushrooms, 11, 249–253.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Herrera Bravo de Laguna.

Additional information

Highlights

Paecilomyces variotii fungus efficiently produces secondary metabolites.

• Bioactive compounds produced by P. variotii are reviewed.

• Research focused on high-value products obtained from P. variotii fungus.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Table S1 (DOCX 17.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mioso, R., Toledo Marante, F.J. & Herrera Bravo de Laguna, I. The Chemical Diversity of the Ascomycete Fungus Paecilomyces variotii . Appl Biochem Biotechnol 177, 781–791 (2015). https://doi.org/10.1007/s12010-015-1783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1783-z

Keywords

Navigation