Skip to main content
Log in

Effects of Temperature and Other Operational Parameters on Chlorella vulgaris Mass Cultivation in a Simple and Low-Cost Column Photobioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mass production of microalgae worldwide, and even more so in developing countries, is strongly contingent upon the availability of economical and efficient photobioreactors (PBRs) that are amenable for use in resource-limited environments. Such options are limited. This work assesses the effects of temperature, CO2 enrichment, and mixing by air + CO2 bubbling on Chlorella vulgaris biomass production in a simple, low-cost 84-L column PBR. Cultivation at 25, 30, and 35 °C in a batch process showed that biomass production was negatively affected above 30 °C. Specific growth rates at each temperature were 0.75, 0.76, and 0.63 day−1, respectively, with batch productivities of 70.50, 81.67, and 35.83 mg L−1 day−1. While a relatively low CO2/air ratio (1 %) seemed beneficial during the early stages of cultivation, higher concentrations were required to maintain growth rate and achieve higher biomass concentrations around 1000 mg L−1. Cultivation with air + CO2 bubbling rates of 100, 200, and 400 L h−1 led to specific growth rates (and batch productivities) of 0.64 day−1 (59.58 mg L−1 day−1), 0.74 day−1 (81.67 mg L−1 day−1), and 0.80 day−1 (86.67 mg L−1 day−1), respectively. The results indicate that high biomass productivities of C. vulgaris can be obtained up to 30 °C with moderate (2 %) to high (10 %) CO2 in a fairly simple PBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fabregas, J., & Herrero, C. (1985). Marine microalgae as a potential source of single cell protein (SCP). Applied Microbiology and Biotechnology, 23(2), 110–113.

    Article  CAS  Google Scholar 

  2. Gershwin, M. E., & Belay, A. (2008). Spirulina in human nutrition and health. Boca Raton, FL: CRC Press, Taylor & Francis Group.

    Google Scholar 

  3. Tredici, M. R., Biondi, N., Ponis, E., Rodolfi, L., & Zittelli, G. C. (2009). Advances in microalgal culture for aquaculture feed and other uses. In G. Burnell & G. Allan (Eds.), New technologies in aquaculture: Improving production efficiency, quality and environmental management (pp. 610–676). Cambridge, UK: Woodhead Publishing Series in Food Science, Technology and Nutrition.

    Chapter  Google Scholar 

  4. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  5. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  CAS  Google Scholar 

  6. Hoffmann, J. P. (1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757–763.

    Article  CAS  Google Scholar 

  7. Raoof, B., Kaushik, B. D., & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy, 30, 537–542.

    Article  CAS  Google Scholar 

  8. Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648.

    Article  CAS  Google Scholar 

  9. Barrow, C., & Shahidi, F. (2008). Marine nutraceuticals and functional foods. Boca Raton, FL: CRC Press, Taylor & Francis Group.

    Google Scholar 

  10. Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037–1047.

    Article  CAS  Google Scholar 

  11. Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., & Madamwar, D. (2011). Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource Technology, 102, 10163–10172.

    Article  CAS  Google Scholar 

  12. Lum, K. K., Kim, J., & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4(53), 1–7.

    Google Scholar 

  13. Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass culture of algae. Bioresource Technology, 99, 4021–4028.

    Article  CAS  Google Scholar 

  14. De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101, 1611–1627.

    Article  CAS  Google Scholar 

  15. Monteiro, C. M., Castro, P. M. L., & Malcata, F. X. (2012). Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnology Progress, 28(2), 299–311.

    Article  CAS  Google Scholar 

  16. Lee, Y.-K. (2001). Microalgal mass culture systems and methods: their limitation and potential. Journal of Applied Phycology, 13(4), 307–315.

    Article  Google Scholar 

  17. Bemiarana, V., Vicenté, N., & Riva, A. (2008). Spirulina and Development. Training and Transfer of Technology in Culture of Spirulina. International Symposium on Spirulina, Toliara, Madagascar, Mémoire de l’Institut Océanographique Paul Ricard, 184 pp.

  18. Charpy, L., Langlade, M. J., & Alliod, R. (2008). La Spiruline peut-elle être un atout pour la santé et le développement en Afrique? Marseille: Rapport de l’Institut de Recherche pour le Développement, 67 pp.

  19. Sawadogo, M., Nikiema, J. B., & Compaore, M. (2004). La spiruline nayalgue: projet de production intégrée au Burkina Faso. Pharmacopée et Médecine Traditionnelle Africaine, 13, 117–132.

    Google Scholar 

  20. Sili, C., Torzillo, G., & Vonshak, A. (2012). Arthrospira (Spirulina). In B. A. Whitton (Ed.), Ecology of cyanobacteria - II (pp. 677–705). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  21. Tang, G., & Suter, P. M. (2011). Vitamin A, nutrition and health values of algae: Spirulina, Chlorella and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1, 111–118.

    Article  CAS  Google Scholar 

  22. Anderson, G. A., Kommareddy, A., & Puetz Anderson, J. (2009). A review of lab scale photobioreactor development. Proceedings of the South Dakota Academy of Science, 88, 33–49.

    Google Scholar 

  23. Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–912.

    Article  CAS  Google Scholar 

  24. Richmond, A. (2000). Microalgal biotechnology at the turn of the millennium: a personal view. Journal of Applied Phycology, 12, 441–451.

    Article  Google Scholar 

  25. Xu, Z., Baicheng, Z., Yiping, Z., Zhaoling, C., Wei, C., & Fan, O. (2002). A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnology Letters, 24, 1767–1771.

    Article  CAS  Google Scholar 

  26. Suh, I., & Lee, C.-G. (2003). Photobioreactor engineering: design and performance. Biotechnology and Bioprocess Engineering, 8(6), 313–321.

    Article  CAS  Google Scholar 

  27. Williams, P. J. B., & Laurens, L. M. L. (2010). Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy and Environmental Sciences, 3, 554–590.

    Article  CAS  Google Scholar 

  28. Bamba, B., Xiaoxi, Y., Lozano, P., Ouattara, A., Abert-Vian, M., & Lozano, Y. (2014). Photobioreactor-based procedures for reproducible small-scale production of microalgal biomasses. Journal of Algal Biomass Utilization, 5(1), 1–14.

    Google Scholar 

  29. Jackson, M. L. (1958). Soil chemistry analysis. Englewood Cliffs: Prentice-Hall, Inc.

    Google Scholar 

  30. Chu, W.-L., See, Y.-C., & Phang, S.-M. (2009). Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. Journal of Applied Phycology, 21, 641–648.

    Article  CAS  Google Scholar 

  31. Bhola, V., Desikan, R., Kumari Santosh, S. K., Subburamu, K., Sanniyasi, E., & Bux, F. (2011). Effects of parameters affecting biomass yield and thermal behavior of Chlorella vulgaris. Journal of Bioscience and Bioengineering, 111(3), 377–382.

    Article  CAS  Google Scholar 

  32. Fu, W., Gudmundsson, O., Feist, A. M., Herjolfsson, G., Brynjolfsson, S., & Palsson, O. B. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242–249.

    Article  CAS  Google Scholar 

  33. Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A., & Chang, J.-S. (2013). Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 135, 157–165.

    Article  CAS  Google Scholar 

  34. Colla, L. M., Oliveira, R. C., Reichert, C., & Costa, J. A. V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489–1493.

    Article  CAS  Google Scholar 

  35. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6, 4607–4638.

    Article  Google Scholar 

  36. Falkowski, P. G., & Raven, J. A. (2007). Aquatic photosynthesis (2nd ed.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  37. Baba, M., & Shiraiwa, Y. (2012). High-CO2 response mechanisms in microalgae. In M. Najafpour (Ed.), Advances in photosyntesis - fundamental aspects (pp. 299–320). Rijeka, Croatia: InTech.

    Google Scholar 

  38. Edwards, T. J., Maurer, G., Newman, J., & Prausnitz, J. M. (1978). Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. American Institute of Chemical Engineers (AIChE) Journal, 24, 966–976.

    Article  CAS  Google Scholar 

  39. Sharma, R., Singh, G. P., & Sharma, V. K. (2012). Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. Plant Pathology and Microbiology, 3(5), 2–6.

    Google Scholar 

  40. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del-Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146–1151.

    Article  CAS  Google Scholar 

  41. Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A., & Das, K. C. (2009). Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal of Molecular Sciences, 10, 518–532.

    Article  CAS  Google Scholar 

  42. Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342.

    Article  CAS  Google Scholar 

  43. Béchet, Q., Muñoz, R., Shilton, A., & Guieysse, B. (2013). Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input. Biotechnology and Bioengineering, 110(1), 118–126.

    Article  Google Scholar 

  44. Rachlin, J. W., & Grosso, A. (1991). The effect of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity. Archives of Environmental Contamination and Toxicity, 20, 505–508.

    Article  CAS  Google Scholar 

  45. Mayo, A. W. (1997). Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris cultures containing bacteria. Water Environment Research, 69, 64–72.

    Article  CAS  Google Scholar 

  46. Westerhoff, P., Hu, Q., Esparza-Soto, M., & Vermaas, W. (2010). Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environmental Technology, 31(5), 523–532.

    Article  CAS  Google Scholar 

  47. Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan, T.-C., Ong, S.-C., & Lin, C.-S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389–3396.

    Article  CAS  Google Scholar 

  48. Lee, C. M., Kim, M. J., Sanjay, K., Kwag, J. H., & Ra, C. S. (2011). Biomass production potential of Chlorella vulgaris under different CO2 concentrations and light intensities. Journal of Animal Science and Technology, 53(3), 261–268.

    Article  Google Scholar 

  49. Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.

    Article  CAS  Google Scholar 

  50. Clément-Larosière, B., Lopes, F., Gonçalves, A., Taidi, B., Benedetti, M., Minier, M., & Pareau, D. (2014). Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities. Engineering in Life Sciences, 14, 509–519.

    Article  Google Scholar 

  51. Zheng, H., Gao, Z., Yin, F., Ji, X., & Huang, H. (2012). Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Bioresource Technology, 126, 24–30.

    Article  CAS  Google Scholar 

  52. Farajzadeh, R., Barati, A., Delila, H. A., Bruininga, J., & Zitha, P. L. J. (2009). Mass transfer of CO2 into water and surfactant solutions. Petroleum Science and Technology, 25, 1493–1511.

    Article  Google Scholar 

  53. Kenekar, A. A., & Deodhar, M. A. (2014). Operational strategies for lab scale horizontal tubular photobioreactor for mitigation of CO2 using an indigenous thermophilic microalgal strain Geitlerinema sulphureum. Journal of Petroleum and Environmental Biotechnology, 5(3), 1–8.

    Article  Google Scholar 

  54. Rodríguez-Maroto, J. M., Jiménez, C., Aguilera, J., & Niell, F. X. (2005). Air bubbling results in carbon loss during microalgal cultivation in bicarbonate-enriched media: experimental data and process modeling. Aquacultural Engineering, 32, 493–508.

    Article  Google Scholar 

  55. Kazim, S.A. (2012). Experimental and empirical correlations for the determination of the overall volumetric mass transfer coefficients of carbon dioxide in stirred tank bioreactors. University of Western Ontario, Electronic Thesis and Dissertation Repository, Paper 815, London ON.

  56. Sánchez Mirόn, A., Garcia Camacho, F., Contreras Gόmez, A., Molina Grima, E., & Chisti, Y. (2000). Bubble-column and airlift photobioreactors for algal culture. American Institute of Chemical Engineers (AIChE) Journal, 46, 1872–1887.

    Article  Google Scholar 

  57. Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88(10), 3389–3401.

    Article  CAS  Google Scholar 

  58. Turpin, D. H., Vanlerberghe, G. C., Amory, A. M., & Guy, R. D. (1991). The inorganic carbon requirements for nitrogen assimilation. Canadian Journal of Botany, 69, 1139–1145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the French Embassy in Côte d’Ivoire and the Centre International de Recherche en Agronomie pour le Développement CIRAD (DGD-RS) for the scholarship and financial support to B.S.B. Bamba.

Compliance with Ethical Standards

Conflict of Interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bio Sigui Bruno Bamba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamba, B.S.B., Lozano, P., Adjé, F. et al. Effects of Temperature and Other Operational Parameters on Chlorella vulgaris Mass Cultivation in a Simple and Low-Cost Column Photobioreactor. Appl Biochem Biotechnol 177, 389–406 (2015). https://doi.org/10.1007/s12010-015-1751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1751-7

Keywords

Navigation