Skip to main content
Log in

Use of Model-Based Nutrient Feeding for Improved Production of Artemisinin by Hairy Roots of Artemisia Annua in a Modified Stirred Tank Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Artemisinin has been indicated to be a potent drug for the cure of malaria. Batch growth and artemisinin production kinetics of hairy root cultures of Artemisia annua were studied under shake flask conditions which resulted in accumulation of 12.49 g/L biomass and 0.27 mg/g artemisinin. Using the kinetic data, a mathematical model was identified to understand and optimize the system behavior. The developed model was then extrapolated to design nutrient feeding strategies during fed-batch cultivation for enhanced production of artemisinin. In one of the fed-batch cultivation, sucrose (37 g/L) feeding was done at a constant feed rate of 0.1 L/day during 10–15 days, which led to improved artemisinin accumulation of 0.77 mg/g. The second strategy of fed-batch hairy root cultivation involved maintenance of pseudo-steady state sucrose concentration (20.8 g/L) during 10–15 days which resulted in artemisinin accumulation of 0.99 mg/g. Fed-batch cultivation (with the maintenance of pseudo-steady state of substrate) of Artemisia annua hairy roots was, thereafter, implemented in bioreactor cultivation, which featured artemisinin accumulation of 1.0 mg/g artemisinin in 16 days of cultivation. This is the highest reported artemisinin yield by hairy root cultivation in a bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Starzengruber, P., Swoboda, P., Fuehrer, H. P., Khan, W. A., Hofecker, V., Siedl, A., Fally, M., Graf, O., Teja-Isavadharm, P., Haque, R., Ringwald, P., & Noedl, H. (2012). Current status of artemisinin-resistant falciparum malaria in South Asia: a randomized controlled artesunate monotherapy trial in Bangladesh. PloS One, 7, 1–7.

    Article  Google Scholar 

  2. Arsenault, P. R., Wobbe, K. K., & Weathers, P. J. (2008). Recent advances in artemisinin production through heterologous expression. Current Medicinal Chemistry, 15, 2886–2896.

    Article  CAS  Google Scholar 

  3. Zhang, Y., Nowak, G., Reed, D. W., & Covello, P. S. (2011). The production of artemisinin precursors in tobacco. Plant Biotechnology Journal, 9, 445–454.

    Article  CAS  Google Scholar 

  4. Peplow, M. Malaria drug made in yeast causes market ferment, Nature, 2013 Feb 2014;2494(7436):2160–2011.

  5. Brown, G. D. (2010). The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules, 15, 7603–7698.

    Article  CAS  Google Scholar 

  6. Graham, I. A., Besser, K., Blumer, S., Branigan, C. A., Czechowski, T., Elias, L., Guterman, I., Harvey, D., Isaac, P. G., Khan, A. M., Larson, T. R., Li, Y., Pawson, T., Penfield, T., Rae, A. M., Rathbone, D. A., Reid, S., Ross, J., Smallwood, M. F., Segura, V., Townsend, T., Vyas, D., Winzer, T., & Bowles, D. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 327, 328–331.

    Article  CAS  Google Scholar 

  7. Chen, H. J., Han, W. B., Hao, H. D., & Wu, Y. K. (2013). A facile and scalable synthesis of qinghaosu (artemisinin). Tetrahedron, 69, 1112–1114.

    Article  CAS  Google Scholar 

  8. Kumar, S., Gupta, S. K., Singh, P., Bajpai, P., Gupta, M. M., Singh, D., Gupta, A. K., Ram, G., Shasany, A. K., & Sharma, S. (2004). High yields of artemisinin by multi-harvest of Artemisia annua crops. Industrial Crops and Products, 19, 77–90.

    Article  CAS  Google Scholar 

  9. Wyslouzil, B. E., Whipple, M., Chatterjee, C., Walcerz, D. B., Weathers, P. J., & Hart, D. P. (1997). Mist deposition onto hairy root cultures: Aerosol modeling and experiments. Biotechnology Progress, 13, 185–194.

    Article  CAS  Google Scholar 

  10. Kim, Y., Wyslouzil, B. E., & Weathers, P. J. (2001). A comparative study of mist and bubble column reactors in the in vitro production of artemisinin. Plant Cell Reports, 20, 451–455.

    Article  CAS  Google Scholar 

  11. Patra, N., Sharma, S., and Srivastava, A. K. (2011) Statistical media optimization for enhanced biomass and artemisinin production in Artemisia annua hairy roots, In Chemistry of Phytopotentials: Health Energy and Environment Perspectives (Srivastava, M. M., Khemani, L. D., and Srivastava, S., Eds.), pp 173–176, Springer-Verlag Berlin Heidelberg

  12. Arsenault, P. R., Vail, D. R., Wobbe, K. K., & Weathers, P. J. (2010). Effect of sugars on artemisinin production in Artemisia annua L.: transcription and metabolite measurements. Molecules, 15, 2302–2318.

    Article  CAS  Google Scholar 

  13. Patra, N., & Srivastava, A. K. (2014). Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Applied Biochemistry and Biotechnology, 174, 2209–2222.

    Article  CAS  Google Scholar 

  14. Lee, J., Lee, S. Y., Park, S., & Middelberg, A. P. (1999). Control of fed-batch fermentations. Biotechnology Advances, 17, 29–48.

    Article  CAS  Google Scholar 

  15. Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2002). Growth of Artemisia annua hairy roots in liquid- and gas-phase reactors. Biotechnology and Bioengineering, 80, 454–464.

    Article  CAS  Google Scholar 

  16. Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H., & Shoyama, Y. (2007). Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnology Letters, 29, 1143–1146.

    Article  CAS  Google Scholar 

  17. Srivastava, S., & Srivastava, A. K. (2012). In vitro azadirachtin production by hairy root cultivation of Azadirachta indica in nutrient mist bioreactor. Applied Biochemistry and Biotechnology, 166, 365–378.

    Article  CAS  Google Scholar 

  18. Patra, N., & Srivastava, A. K. (2014). Mass scale artemisinin production in a stirred tank bioreactor using hairy roots of Artemisia annua. International Journal of Bioscience, Biochemistry and Bioinformatics, 4, 467–474.

    Google Scholar 

  19. Rosenbrock, H. H. (1960). An automatic method of finding the greatest or the least value of a function. The Computer Journal, 3, 175–184.

    Article  Google Scholar 

  20. Volesky, B., & Votruba, J. (1992). Modelling and optimization of fermentation processes. Amsterdam: Elsevier.

    Google Scholar 

  21. Bard, Y. (1974). Nonlinear parameter estimation. New York; London: Academic.

    Google Scholar 

  22. Kaur, G., Srivastava, A. K., & Chand, S. (2012). Mathematical modelling approach for concentration and productivity enhancement of 1,3-propanediol using Clostridium diolis. Biochemical Engineering Journal, 68, 34–41.

    Article  CAS  Google Scholar 

  23. Cataldo, D. A., Haroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Communations in Soil Science and Plant, 6, 71–80.

    Article  CAS  Google Scholar 

  24. Brunner, I., Brodbeck, S., & Walthert, L. (2002). Fine root chemistry, starch concentration, and ‘vitality’ of subalpine conifer forests in relation to soil pH. Forest Ecology Management, 165, 75–84.

    Article  Google Scholar 

  25. Miller, G. H. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  26. Murphy, J., & Riley, J. P. (1962). A modified single solution method for determination of phosphate in natural systems. Analytica Chemica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  27. Smith, T. C., Weathers, P. J., & Cheetham, R. O. (1997). Effects of gibberellic acid on hairy root cultures of Artemisia annua: growth and artemisinin production. In Vitro Cell Develpment in Plants, 33, 75–79.

    Article  CAS  Google Scholar 

  28. Paniego, N. B., & Giulietti, A. M. (1996). Artemisinin production by Artemisia annua L.-transformed organ cultures. Enzyme and Microbiol Technology, 18, 526–530.

    Article  CAS  Google Scholar 

  29. Shuler, M. L., & Kargi, F. (2002). Bioprocess engineering-basic concepts (2nd ed.). New Jersey, USA: Pearson Prentice Hall.

    Google Scholar 

  30. Monod, J. (1942). Recherches sur la Croissance des Cultures Bacte’riennes. Paris: Herman.

    Google Scholar 

  31. Prakash, G., & Srivastava, A. K. (2006). Modeling of azadirachtin production by Azadirachta indica and its use for feed forward optimization studies. Biochemical Engineering Journal, 29, 62–68.

    Article  CAS  Google Scholar 

  32. Pavlov, A., Georgiev, M., & Bley, T. (2007). Batch and fed-batch production of betalains by red beet (Beta vulgaris) hairy roots in a bubble column reactor, Zeitschrift fur Naturforschung. C, Journal of biosciences, 62, 439–446.

    CAS  Google Scholar 

  33. Mairet, F., Villon, P., Boitel-Conti, M., & Shakourzadeh, K. (2010). Modeling and optimization of hairy root growth in fed-batch process. Biotechnology Progress, 26, 847–856.

    Article  CAS  Google Scholar 

  34. De Vos, D., Dzhurakhalov, A., Draelants, D., Bogaerts, I., Kalve, S., Prinsen, E., Vissenberg, K., Vanroose, W., Broeckhove, J., & Beemster, G. T. (2012). Towards mechanistic models of plant organ growth. Journal of Experimental Botany, 63, 3325–3337.

    Article  Google Scholar 

  35. Maschke, R. W., Geipel, K., & Bley, T. (2015). Modeling of plant in vitro cultures—overview and estimation of biotechnological processes. Biotechnology and Bioengineering, 112(1), 1–12.

    Article  CAS  Google Scholar 

  36. Choi, Y.-E., Kim, Y.-S., and Paek, K.-Y. (2006) Types and designs of bioreactors for hairy root culture, In Plan Tissue Culture Engineering (Gupta, S. D., and Ibaraki, Y., Eds.), pp 161–172, Springer Netherlands.

  37. Choi, J. W., Cho, G. H., Byun, S. Y., & Kim, D. I. (2001). Integrated bioprocessing for plant cell cultures. Advances in Biochemical Engineering/Biotechnology, 72, 63–102.

    Article  CAS  Google Scholar 

  38. Prakash, G., & Srivastava, A. K. (2011). Integrated yield and productivity enhancement strategy for biotechnological production of azadirachtin by suspension culture of Azadirachta indica. Asia-Pacific Journal of Chemical Engineering, 6, 129–137.

    Article  CAS  Google Scholar 

  39. Chattopadhyay, S., Bisaria, V. S., Scheper, T., & Srivastava, A. K. (2002). Non-invasive methods for determination of cellular growth in Podophyllum hexandrum suspension cultures. Biotechnology and Bioprocess Engineering, 7, 331–334.

    Article  CAS  Google Scholar 

  40. Srivastava, S., Harsh, S., & Srivastava, A. K. (2008). Use of NADH fluorescence measurement for on-line biomass estimation and characterization of metabolic status in bioreactor cultivation of plant cells for azadirachtin (a biopesticide) production. Process Biochemistry, 43, 1121–1123.

    Article  CAS  Google Scholar 

  41. Palavalli, R. R., Srivastava, S., & Srivastava, A. K. (2012). Development of a mathematical model for growth and oxygen transfer in in vitro plant hairy root cultivations. Applied Biochemistry and Biotechnology, 167, 1831–1844.

    Article  CAS  Google Scholar 

  42. Wyslouzil, B. E., Whipple, M., Chatterjee, C., Walcerz, D. B., Weathers, P. J., & Hart, D. P. (1997). Mist deposition onto hairy root cultures: aerosol modeling and experiments. Biotechnology Progress, 13, 185–194.

    Article  CAS  Google Scholar 

  43. Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M. D., Tai, A., Main, A., Eng, D., Polichuk, D. R., Teoh, K. H., Reed, D. W., Treynor, T., Lenihan, J., Fleck, M., Bajad, S., Dang, G., Dengrove, D., Diola, D., Dorin, G., Ellens, K. W., Fickes, S., Galazzo, J., Gaucher, S. P., Geistlinger, T., Henry, R., Hepp, M., Horning, T., Iqbal, T., Jiang, H., Kizer, L., Lieu, B., Melis, D., Moss, N., Regentin, R., Secrest, S., Tsuruta, H., Vazquez, R., Westblade, L. F., Xu, L., Yu, M., Zhang, Y., Zhao, L., Lievense, J., Covello, P. S., Keasling, J. D., Reiling, K. K., Renninger, N. S., & Newman, J. D. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the supply of elite seed material of A. annua from CIMAP Lucknow. The financial support by Ministry of Human Resource Development, New Delhi (India), for the execution of the above project is gratefully acknowledged by one of the authors (Nivedita Patra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, N., Srivastava, A.K. Use of Model-Based Nutrient Feeding for Improved Production of Artemisinin by Hairy Roots of Artemisia Annua in a Modified Stirred Tank Bioreactor. Appl Biochem Biotechnol 177, 373–388 (2015). https://doi.org/10.1007/s12010-015-1750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1750-8

Keywords

Navigation